Archive
441 postsElectromagnetic fields regulate iron metabolism: From mechanisms to applications
This review synthesizes evidence that electromagnetic field (EMF) exposure is associated in the literature with changes in systemic and cellular iron metabolism, with reported effects varying by EMF parameters, exposure duration, and biological context. It proposes mechanistic pathways involving iron-containing proteins/tissues, membrane and ion channel modulation, and reactive oxygen species (ROS). The authors frame iron-metabolism modulation as relevant to both therapeutic applications and safety evaluation, while emphasizing inconsistencies and the need for standardized exposure protocols.
Active matter as the underpinning agency for extraordinary sensitivity of biological membranes to electric fields
This biophysics paper presents a nonequilibrium (active matter) statistical mechanics model for electromechanical biological membranes. It argues that energy-driven activity in membranes could enable detection of electric fields far below equilibrium thermal-noise limits, and reports that the model can reproduce experimental observations by tuning activity. The abstract frames this as a potential mechanistic link between weak electromagnetic fields and biological responses, while also noting future modeling directions and possible implications for exposure safety discussions.
Single exposure to near-threshold 5G millimeter wave modifies restraint stress responses in rats
In a rat experiment (n=59), a single 40-minute whole-body 28 GHz exposure at near-threshold WBA-SAR levels was evaluated under normal and heat conditions with restraint. After accounting for sham-related restraint stress, exposure was associated with increased serum-free corticosterone 1–3 days later, especially when rectal temperature rose by >1°C. Urinary catecholamines suggested an immediate inhibitory effect on stress response (notably noradrenaline), with heat amplifying effects and linking noradrenaline to tail surface temperature.
Effects of non-ionizing radiation on the thyroid gland in rats
This animal study exposed Sprague-Dawley rats (including pregnant females and offspring) to 2.45 GHz Wi-Fi or mobile jammer radiation for 2 hours daily over two weeks and assessed thyroid hormones and thyroid histology. The abstract reports significant changes in T4 in exposed adult males and significant differences in T3 among male offspring exposed to jammer radiation. Histopathology reportedly showed disrupted thyroid follicular structure in exposed rats. The authors conclude these findings support a potential link between non-ionizing radiation exposure and altered thyroid endocrine and histological parameters.
An 1800 MHz Electromagnetic Field Affects Hormone Levels, Sperm Quality, and Behavior in Laboratory Rats
This animal study exposed rats to a 1800 MHz electromagnetic field for 12 weeks and assessed hormones, sperm quality, and behavior. The abstract reports increased corticosterone, decreased thyroid-stimulating hormone, reduced sperm motility/viability, and increased anxiety-like behavior in exposed rats. Some hormonal changes reportedly persisted for at least 2 weeks after exposure ended, and the authors frame the results as indicating adverse endocrine, reproductive, and behavioral effects.
Impairment of Oogenesis and Folliculogenesis in Neonatal Rats after Maternal Exposure to Mobile Phones
This animal study examined maternal mobile phone exposure during different gestational windows in Wistar rats and assessed ovarian development and hormones in neonatal offspring. Compared with sham (phone off), exposed groups (standby and conversation/standby) were reported to have lower neonatal estrogen and progesterone and reduced primordial follicle/primary oocyte measures, with stronger effects after longer exposure. The study also reports increased primordial follicle apoptosis, particularly in the conversation/standby condition, and notes effects even with first-week gestational exposure.
Analyzing the Impact of Occupational Exposures on Male Fertility Indicators: A Machine Learning Approach
This occupational epidemiology study used machine learning to evaluate whether workplace exposures (including magnetic and electric fields, vibration, noise, and heat stress) predict male reproductive indicators in 80 workers. The models and explainable AI outputs highlighted magnetic and electric field exposures and age as key predictors linked to lower free testosterone. The authors also report a 10-year forecast identifying electric field exposure as the most important long-term risk factor.
A Mini-Review of the Potential Health Impacts of Indoor Radiation Exposure in Companion Animals
This mini-review discusses indoor radiation sources that may affect companion animals, including radon, radionuclides in feed, radiofrequency sources (phones, Wi-Fi, pet tracking devices), solar radiation, and extremely low frequency radiation. It reports that indoor radiation may negatively impact companion animal health and well-being. The authors conclude that preventive and precautionary measures are necessary to protect companion animals from indoor radiation exposure.
Melatonin ameliorates RF-EMR-induced reproductive damage by inhibiting ferroptosis through Nrf2 pathway activation
This animal study reports that prolonged RF-EMR exposure (2.45 GHz for 8 weeks) increased oxidative stress and ferroptosis in mouse testicular tissue and was associated with reduced sperm quality. Melatonin administration reportedly mitigated oxidative injury and inhibited ferroptosis. The abstract attributes the protective effect to Nrf2 pathway activation via MT1/MT2 receptors.
Terahertz Radiation Affects the Dynamics of Neurons by Decreasing Membrane Area Ratio
This study reports that terahertz radiation decreased a neuronal membrane area ratio (cytosol relative to protruding membrane area) beginning on the first day of exposure and persisting during the exposure period. It further reports altered neuronal firing/discharge patterns and increased peak postsynaptic currents associated with the morphology change, supported by a kinetic model. The authors frame the findings as indicating significant effects of terahertz-frequency EMF on neural health and function and suggest potential neuromodulation applications.
Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health
This review examines links between extremely low-frequency electromagnetic fields, especially the Schumann resonance at ~7.83 Hz, and biological regulation of bioelectricity. It describes proposed mechanisms involving calcium flux modulation and downstream effects on neural activity (including EEG) and circadian rhythms. The article presents both potential benefits from controlled ELF exposures (e.g., therapeutic applications) and potential harms from artificial EMFs disrupting key physiological processes, while emphasizing the need for further research.
Effect of Occupational Exposure to Low-frequency Electromagnetic Fields on Cataract Development
This cross-sectional epidemiologic study enrolled 100 employees of an electricity company to assess whether occupational low-frequency electromagnetic field exposure is associated with cataract development. Cataract frequency was higher in exposed versus non-exposed groups, and nuclear opacity grading differed significantly between groups. Within exposed workers, nuclear and posterior subcapsular cataract grades were associated with longer work experience, suggesting occupational exposure may be a risk factor, particularly for nuclear cataracts.
Carcinogenicity of extremely low-frequency magnetic fields: A systematic review of animal studies
This PRISMA-based systematic review evaluated 54 animal studies on the carcinogenicity of extremely low-frequency (ELF) magnetic fields. The authors report very little evidence that ELF magnetic fields alone are carcinogenic. Findings on co-carcinogenicity (ELF MFs combined with other agents) are inconclusive, and the review notes a clear indication of publication bias.
Effect of short-term extremely low-frequency electromagnetic field on respiratory functions
This animal study tested whether short-term ELF-EMF exposure alters respiratory physiology in rats. Twenty Wistar albino rats were assigned to control or EMF exposure (50 Hz, 0.3 mT for 2 minutes) with respiratory parameters measured before, during, and after exposure. The study reports changes during exposure (lower respiratory rate and higher cycle duration, inspiration time, and tidal volume) but no differences after exposure, and it frames the findings as relevant to EMF safety and potential health risks.
Electromagnetic wireless remote control of mammalian transgene expression
This animal proof-of-concept study describes an engineered nanoparticle–cell interface (EMPOWER) enabling wireless regulation of transgene expression using a 1-kHz magnetic field. Chitosan-coated multiferroic nanoparticles reportedly generate intracellular ROS that activates KEAP1/NRF2 biosensors connected to ROS-responsive promoters. In a mouse model of type 1 diabetes, implanted engineered cells expressing an EMPOWER-controlled insulin system reportedly normalized blood glucose in response to a weak magnetic field.
Effects of radiofrequency electromagnetic field exposure on cancer in laboratory animal studies, a systematic review
This systematic review evaluated RF EMF exposure and cancer outcomes in experimental animals, including chronic cancer bioassays and tumor-promotion designs. Across 52 included studies, the authors report high certainty of evidence for increased malignant heart schwannomas and gliomas in male rats, and moderate certainty for increased risks of several other tumor types. Many other organ systems showed no or minimal evidence of carcinogenic effects, and the authors note challenges in translating animal findings to human risk assessment due to exposure and mechanistic uncertainties.
The association of widely used electromagnetic waves exposure and pregnancy and birth outcomes in Yazd women: a cohort study
This cohort study of 1,666 women in Yazd City examined electromagnetic-wave exposure from commonly used devices during pregnancy and birth outcomes. Longer cell phone call duration during pregnancy was reported to be associated with higher risk of miscarriage, abnormal birth weight, and abnormal newborn height. Increased cordless phone use was also reported to be linked to abnormal birth weight, while other outcomes were assessed but not described as significantly associated in the abstract.
Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review
This scoping review evaluates evidence on mobile phone electromagnetic exposure and its effects on brain oscillations and cortical excitability in healthy individuals. Across 78 EEG studies (and 2 TMS studies), the authors report that exposure may be linked to changes in neural activity, including increased amplitudes in several EEG bands and possible changes in cortical silent period. However, substantial methodological inconsistency across studies limits firm conclusions, and the review highlights limited evidence for 5G/mmWave exposures and argues for precaution and potential guideline revision.
Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites
This review/overview argues that ultrafine particulate matter and industrial nanoparticles can reach the brain and accumulate in sleep and arousal regulatory regions, including orexinergic neuron hubs. It reports that ferromagnetic particles in these regions show motion responsive to low-intensity electromagnetic fields (30–50 μT) and describes links to sleep disturbances and neurodegenerative disease markers in young urban residents. The authors frame combined air pollution nanoparticle exposure and low-level EMF as a significant threat and call for monitoring and protective strategies.
Understanding Electromagnetic Hypersensitivity (EHS) From Mobile Phone Radiofrequency Radiation (RFR) Exposure: A Mixed-Method Study Protocol
This paper presents a mixed-method study protocol examining electromagnetic hypersensitivity (EHS) in relation to mobile phone radiofrequency radiation exposure among undergraduate students. The quantitative component aims to identify predictors of EHS using a biopsychosocial model, while the qualitative component explores individual experiences through in-depth interviews. The abstract provides study design details and sample size but does not report study results.
Assessing EMF Exposure in Greek Urban and Suburban Areas During 5G Deployment: A Focus on 5G EMF Levels and Distance Correlation
This exposure assessment reports 400 ground-level electric field measurements in Greek urban and suburban areas during 5G deployment. It finds that 4G contributes most to overall measured EMF exposure, while 5G currently contributes less. The study reports an inverse relationship between 3.5 GHz EMF levels and distance from 5G base stations, with urban areas showing higher levels than suburban areas.
Impact of expectancy on fatigue by exposure to the fifth generation of mobile communication signals
This randomized sham-controlled study in 21 healthy participants tested whether routine-level 5G RF-EMF exposure affects fatigue and EEG power, while manipulating expectancy via correct, false, or no information about exposure order. The study reports no change in EEG power with real versus sham exposure. However, self-reported fatigue varied with the conveyed information about being exposed, suggesting an expectancy/psychological priming effect on symptom reporting.
Determining the relationship between mobile phone network signal strength and RF-EMF exposure: protocol and pilot study to derive conversion functions
This protocol and pilot study evaluated whether smartphone signal strength indicators can be converted into RF-EMF exposure estimates using derived formulas and regression models. The study reports a positive log-linear association between LTE RSSI and far-field (base station) exposure aggregated by location, while handset-related exposure at the ear and chest during data transmission showed negative log-linear trends with improving signal quality. The authors conclude the ETAIN 5G-Scientist app may support large-scale RF-EMF exposure assessment, but emphasize the need for more data to improve accuracy and address uncertainties in individual measurements.
Chicken or egg? Attribution hypothesis and nocebo hypothesis to explain somatization associated to perceived RF-EMF exposure
This longitudinal cohort study examined the temporal relationship between somatization and perceived RF-EMF exposure, comparing the attribution hypothesis with the nocebo hypothesis. Using AMIGO questionnaire data from 2011 and 2015, regression analyses suggested the attribution hypothesis more often explained symptom reporting linked to perceived base station RF-EMF exposure and perceived electricity exposure than the nocebo hypothesis. The authors state this contrasts with prior literature and note that a nocebo effect is not fully excluded.
Efficient design of electromagnetic field exposure maps with multi-method evolutionary ensembles
This engineering/methods study proposes an evolutionary computation approach (PCRO-SL) to optimize the selection of measurement points for constructing RF-EMF exposure maps. Tested on real measurements in Meco (Madrid, Spain), it reports good agreement with a reference exposure map while reducing required sampling density. The authors provide practical point-selection rules (e.g., line-of-sight within 250 m and directional sampling within 500 m) intended to maintain representativeness and avoid interpolation artifacts.