Archive
163 postsNavigating Environmental Crossroads: Pesticides, Bee Pollinators, and the Wireless Revolution
This article summarizes a webinar series and frames pesticides and wireless radiation as concurrent environmental health crises affecting ecosystems and public health. It asserts that evidence is building for adverse effects of EMF/wireless radiation in humans, animals, and bees, including “high-certainty links” between RF radiation and tumors in brain and heart nerves. It also suggests potential synergy between chemical and EMF exposures impacting bee hive productivity and argues for precautionary policy and stronger exposure guidelines.
From particulates to pathways: environmental exposures and their impact on Alzheimer's disease
This review discusses how environmental exposures across air, water, and soil pollutants may influence Alzheimer's disease (AD) onset and progression. It highlights EMFs as a potential aggravating factor, reporting associations with oxidative stress, inflammation, calcium dysregulation, and accelerated amyloid-beta plaque accumulation in animal and human studies. The authors emphasize risk reduction strategies and call for further research and public health interventions.
Acoustic Pressures in the Head from Pulsed Microwaves: Can They Explain the Havana Syndrome?
This preprint discusses the microwave auditory effect, in which pulsed microwave exposure can produce perceived clicks or buzzing sensations. It considers whether acoustic pressures in the head generated by pulsed microwaves could explain health conditions such as "Havana Syndrome." The abstract emphasizes evaluating potential risks from electromagnetic field exposures but does not provide specific methods or quantitative results.
Instruments and Measurement Techniques to Assess Extremely Low-Frequency Electromagnetic Fields
This paper presents a quantitative framework for selecting extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. It uses a weighted scoring matrix across six criteria and a logic-based flowchart to guide instrument choice based on operational needs. The framework is demonstrated in an occupational case study and is positioned as supporting transparent, adaptable device selection for occupational safety and public health.
Effect of Static Electromagnetic Field on Growth Parameters, Survival Rate, Sex Distribution, Ratio, and Liver and Gonadal Health of Zebrafish
This animal study exposed zebrafish embryos to static electromagnetic fields for 63 days post-hatching across aquariums positioned 30–99 cm from the source, with an EMF-free control. The abstract reports strong shifts in sex distribution (including 100% female at the closest distance), markedly reduced survival in exposed groups, and histological liver and gonadal damage. The authors frame the findings as evidence of potential ecological risk via disrupted sex ratios and compromised health.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
Impact of Radiofrequency Electromagnetic Fields on Cardiac Activity at Rest: A Systematic Review of Healthy Human Studies
This systematic review evaluated evidence on RF-EMF exposure and cardiac activity (heart rate and heart rate variability) in healthy humans at rest. Across 28 studies spanning 100 to 110,000 MHz and exposures from minutes to a week, most studies reported no significant effects on resting heart rate, and HRV findings were largely null under calm conditions. Some position-dependent HRV changes were reported, and the authors note possible effects during physiological challenges, but conclude evidence is insufficient for firm conclusions beyond resting healthy populations.
Exploring research trends in health effects of 5G antennas: a bibliometric analysis
This paper presents a bibliometric analysis of Web of Science literature (2012–2025) on potential health effects related to 5G antennas. It reports a marked increase in publications in the past five years, with substantial attention to dosimetric metrics (SAR and power density) and their regulatory limits. The authors forecast continued growth in the field and emphasize the need for ongoing research and interdisciplinary collaboration focused on potential health risks and compliance.
Smartphone Usage Patterns and Sleep Behavior in Demographic Groups: Retrospective Observational Study
This retrospective observational study analyzed Murmuras app data from 1074 participants in 2022 to examine demographic differences in smartphone use and nocturnal smartphone inactivity duration (a proxy for sleep-related behavior). Nighttime smartphone use increased, especially for social media and entertainment, and usage patterns varied by gender, age, education, and employment status. Most demographic groups showed no significant correlation between usage duration and nocturnal inactivity, although some subgroups showed correlations in either direction. The authors frame excessive nighttime smartphone use as potentially adverse for sleep and link this behavioral exposure to electromagnetic fields with sleep health risks.
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
This paper presents a machine-learning method to estimate ground-level electromagnetic radiation (electric field strength) in the near field of 5G base stations, using multiple technical and environmental input parameters. The authors report experimental performance with a mean absolute percentage error of about 5.89% and suggest the approach can reduce costs compared with on-site measurements. The work is positioned as supporting exposure management and base-station placement, while noting the need for careful EMF management due to potential health-risk links.
Analysis of Human Exposure to Electric and Magnetic Fields While Charging and Driving an Electric Vehicle
This paper describes planned experimental measurements of electric and magnetic fields generated by electric vehicles during charging and driving. The abstract emphasizes that occupants can experience notable EMF exposure due to proximity to vehicle electrical systems, while stating that specific health risks in the EV context remain uncertain. It also notes that manufacturers implement technological design solutions intended to reduce exposure.
A Prolonged exposure to Wi-Fi Radiation Induces Neurobehavioral Changes and Oxidative Stress in Adult Zebrafish
This animal study exposed adult zebrafish to 2.45 GHz Wi‑Fi radiation for 4 hours daily over 30 consecutive days. The authors report neurobehavioral impairments with altered locomotion, alongside decreased acetylcholinesterase and increased brain oxidative stress. They conclude these findings indicate a safety risk and call for further mechanistic and public health research.
Perspectives on terahertz honeybee sensing
This paper describes measurements and simulations to support terahertz (THz) sensing of European honey bees for environmental monitoring. It reports dielectric characterization of bee body parts across 1–500 GHz, scattering-based validation of 3D-printed bee mockups, and THz imaging demonstrating detailed anatomical visualization. The work includes dosimetric simulations at 300 GHz to evaluate feasibility of non-invasive, continuous monitoring and notes potential relevance to assessing high-frequency EMF impacts on insect health and habitat safety.
13.56 MHz RFID Module - From Application to Process Modelling and Effects on Human Health
This paper presents an application and numerical process modelling of a 13.56 MHz RFID module, including how nearby tags/cards and their positioning affect antenna characteristics. It also considers RFID operation near human tissues and discusses potential health impacts from prolonged EMF exposure at 13.56 MHz. The authors emphasize the importance of evaluating long-term exposure risks and call for additional scientific attention.
A novel approach for assessments of radiofrequency electromagnetic fields exposure in buildings near telecommunication infrastructure
This paper proposes a new methodology to better assess indoor RF-EMF exposure in buildings near telecommunication base station antennas by refining measurement-point selection. Implemented in four multi-storey buildings in Natal, Brazil, indoor electric field peaks and averages were reported to be substantially higher than ground-level measurements. Although the highest indoor levels remained below ICNIRP recommended limits, the authors argue current regulatory evaluation methods may underestimate indoor exposure in certain building locations.
Evaluation of Personal Radiation Exposure from Wireless Signals in Indoor and Outdoor Environments
This exposure assessment measured personal RF electric field strength in multiple indoor and outdoor micro-environments in Malaysia using an ExpoM-RF 4 meter and modeled exposure with machine learning (FCNN, XG Boost) and linear regression. Reported exposures were usually below the stated public limit (61.4 V/m), but maximum values in dense urban areas with many base stations were reported to approach 56.7365 V/m. The authors frame near-threshold maxima in high-density areas as a potential health risk and recommend caution and monitoring.
Histomorphometric study of thyroid tissue in juvenile rats exposed to 5G electromagnetic fields
This animal study examined thyroid histomorphometry in juvenile male Wistar rats after 2 weeks of 5G EMF exposure (3.5 GHz, 1.5 V/m). Exposed rats showed larger follicle and colloid areas and a significantly lower Thyroid Activation Index, which the authors interpret as thyroid hypoactivity. The authors suggest this may represent a potential health risk and call for further work including hormone assays and mechanistic studies.
Protective effects of quercetin against 3.5 GHz RF radiation-induced thyroid dysfunction and oxidative stress in rats
This rat study examined repeated 3.5 GHz RF exposure (2 hours/day, 5 days/week for 30 days) and thyroid-related outcomes, with and without quercetin. The abstract reports altered thyroid hormones (lower T3/T4, higher TSH) and increased oxidative stress in thyroid tissue after RF exposure. Quercetin appeared partially protective, though effects were not uniformly statistically significant, and SAR simulations indicated relatively higher absorption in the thyroid region.
Human achromatic flickers and phosphenes thresholds under extremely low frequency electric stimulations
This study estimated thresholds and locus for human phosphene perception during non-invasive transcranial alternating current stimulation at 20, 50, 60, and 100 Hz. Perception depended significantly on stimulation intensity, with the lowest threshold at 20 Hz and no reported phosphenes at 100 Hz. The authors report dosimetry consistent with a retinal origin and frame the findings as relevant for informing cautious ELF exposure limits in safety guidelines.
Influence of geomagnetic disturbances on myocardial infarctions in women and men from Brazil
This ecological analysis used a public health database of myocardial infarction admissions in São José dos Campos, Brazil (1998–2005) and categorized geomagnetic activity using the planetary Kp index. The abstract reports a higher relative frequency of MI admissions during disturbed geomagnetic conditions compared with quiet periods, with a stronger association in women. Unsupervised k-means clustering reportedly supported the sex-specific pattern.
Effects of Polarized Coherent Microwaves Modulated at Extremely Low Frequencies
This review-style text discusses polarized, coherent microwaves that are modulated and pulsed at extremely low frequencies (ELF) and suggests these characteristics may increase biological interactions. It emphasizes that intensity variability and ELF modulation are important for understanding EMF–biology interactions. It also states that such exposures have been linked to health risks in the scientific literature, framing the topic as relevant to EMF safety and public health risk mitigation.
A comprehensive mechanism of biological and health effects of anthropogenic extremely low frequency and wireless communication electromagnetic fields
This narrative review discusses biological mechanisms and reported health effects of anthropogenic extremely low frequency (ELF) and wireless communication (WC) electromagnetic fields. It highlights oxidative stress and DNA damage as key mechanistic endpoints and proposes an IFO-VGIC pathway linking EMF exposure to ROS overproduction and cellular dysfunction. The authors interpret the broader literature as indicating risks (e.g., cancer, infertility, EHS) even below current exposure limits and advocate precautionary policy measures, including stricter limits and a 5G moratorium.
Rapid Deployment of 5G Wireless Communication and Risk Assessment on Human Health: Quid Novi?
This review discusses the rapid deployment of 5G and the associated debate about potential human health impacts from EMF exposure, particularly at 3.5–26 GHz including millimeter waves. It emphasizes limited published studies in these exposure ranges and highlights EU-funded initiatives and research consortia aimed at closing knowledge gaps. The authors state that guidelines are generally considered adequate at present, but argue that uncertainties—especially regarding long-term exposure—support continued research and precautionary approaches.
5G-exposed human skin cells do not respond with altered gene expression and methylation profiles
This in vitro study exposed human skin cells (fibroblasts and keratinocytes) to 5G-band electromagnetic fields for 2 hours and 48 hours using a fully blinded design. Exposures were up to ten times permissible limits, with sham exposure as a negative control and UV exposure as a positive control. The study reports that observed gene expression and DNA methylation differences were minor and consistent with random variation, supporting no detectable EMF-related effect under the tested conditions.
Impact of mobile phone-emitted non-ionizing electromagnetic radiation on parotid gland function: A comprehensive study
This cross-sectional study of 104 university student volunteers assessed whether mobile phone-emitted non-ionizing electromagnetic radiation is associated with changes in parotid gland-related salivary measures. The authors report higher salivary flow rate and pH with longer mobile phone usage duration, along with side-related differences in albumin, IMA, and IMAR. The paper concludes that consistent exposure to mobile phone NIER and associated heat adversely affects parotid gland function and frames this as a health risk, while calling for further long-term research.