Archive
331 postsMachine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
This paper presents a machine-learning method to estimate ground-level electromagnetic radiation (electric field strength) in the near field of 5G base stations, using multiple technical and environmental input parameters. The authors report experimental performance with a mean absolute percentage error of about 5.89% and suggest the approach can reduce costs compared with on-site measurements. The work is positioned as supporting exposure management and base-station placement, while noting the need for careful EMF management due to potential health-risk links.
Cluster Analysis of RF-EMF Exposure to Detect Time Patterns in Urban Environment: A Model-Based Approach
This paper applies a model-based clustering approach (Log-Normal Mixture Model) to continuous RF-EMF monitoring data from the Serbian EMF RATEL network in Novi Sad to characterize temporal exposure patterns. The analysis reports separation of night versus day exposure values and identification of daytime periods where exposure persists longer. The work is positioned as supporting improved understanding of when and where elevated exposures occur in urban environments.
Weak Radiofrequency Field Effects on Biological Systems Mediated through the Radical Pair Mechanism
This 2025 review examines claims of biological effects from weak, nonthermal RF magnetic fields and evaluates whether such effects could be mediated by the radical pair mechanism (RPM). It reports that aligning RPM theory with low-level experimental observations remains difficult and that many experimental findings are limited by reproducibility, statistical robustness, and dosimetry issues. The authors conclude a tangible but incompletely understood link may exist and emphasize the need for more rigorous, standardized, interdisciplinary work.
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
This exposure assessment measured magnetic fields inside modern Japanese EVs, PHEVs, and ICEVs during actual driving using methods aligned with IEC 62764-1:2022. All measured magnetic flux density values were reported to be below ICNIRP public exposure reference levels. The study mapped in-cabin field sources and noted methodological differences may explain higher transient spikes reported in some international studies.
Analysis of Human Exposure to Electric and Magnetic Fields While Charging and Driving an Electric Vehicle
This paper describes planned experimental measurements of electric and magnetic fields generated by electric vehicles during charging and driving. The abstract emphasizes that occupants can experience notable EMF exposure due to proximity to vehicle electrical systems, while stating that specific health risks in the EV context remain uncertain. It also notes that manufacturers implement technological design solutions intended to reduce exposure.
Standards: Exposure Limits for Brief High Intensity Pulses of Radiofrequency Energy Between 6 and 300 GHz
This standards-focused paper evaluates ICNIRP and IEEE (C95.1-2019) exposure limits for brief, high-intensity pulsed RF-EMF between 6 and 300 GHz, particularly when exposures vary within the 6-minute averaging window. Using numerical and analytical modeling with a one-dimensional thermal tissue model, it reports differences in protection against transient skin heating, with IEEE described as more conservative than ICNIRP. The authors propose an adjustment to pulse fluence limits to improve consistency of protection and note that nonthermal and thermoacoustic effects were not analyzed.
Effect of the radiation emitted from a cell phone on T lymphocytes in mice
This mouse study examined whether cell phone radiation affects T lymphocytes over 2–8 weeks of exposure. CD4 and CD8 subset percentages were similar across groups, but after more than six weeks, exposed groups showed increased T-cell apoptosis and reduced transformation rates compared with shams. The study also reports decreased IL-10 and increased IL-12 in exposed groups, suggesting time-dependent immunological changes under the tested conditions.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Single-cell analysis reveals the spatiotemporal effects of long-term electromagnetic field exposure on the liver
This animal study exposed mice to 2.45 GHz electromagnetic fields daily for up to 5 months and assessed liver effects using serum tests, lipidomics, histology, and single-cell/spatiotemporal transcriptomics. The authors report that hepatic cell types differed in sensitivity, with hepatocytes, endothelial cells, and monocytes showing notable transcriptomic disruptions. Reported changes involved lipid metabolism and immune regulation and were spatially enriched in peri-portal liver regions. The authors frame the findings as evidence of significant biological impacts on the liver from long-term EMF exposure.
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
This in vitro study exposed yeast suspensions to 2.45 GHz near-field microwave radiation at 2 cm and 4 cm for 20 or 60 minutes. It reports oxidative-stress-related changes (reduced antioxidant activity with increased membrane permeability) after 20 minutes at 2 cm, an effect not reproduced by conventional heating. The study also reports a trend toward increased DNA damage under both exposure conditions and mild membrane permeability changes after 60 minutes at 4 cm.
Low frequency magnetic field exposure and neurodegenerative disease: systematic review of animal studies
This systematic review synthesizes animal studies on low frequency magnetic field exposure in relation to neurodegenerative diseases. It reports no support for a causal induction of Alzheimer’s-type neuropathology in naive animals, while noting that evidence is too limited to draw strong conclusions for motor neuron disease, multiple sclerosis, and Parkinson’s disease regarding induced neuropathology. In models with pre-existing neurodegenerative disease, the review describes possible therapeutic effects on behavioral and neuroanatomical outcomes for dementia-related conditions, and no apparent effect on motor neuron disease progression.
Proteomic Characterization of Human Peripheral Blood Mononuclear Cells Exposed to a 50 Hz Magnetic Field
This in vitro study compared proteomic profiles of PBMCs from three human donors after 24-hour exposure to a 50 Hz, 1 mT extremely low-frequency magnetic field versus unexposed cells. The abstract reports broad protein expression changes, including upregulation of proteins associated with metabolic processes and downregulation of proteins linked to T cell costimulation/activation and immune processes. No effects were observed on cell proliferation, viability, or cell cycle progression. The authors interpret the proteomic shifts as metabolic reprogramming with potential implications for immune regulation.
Microleakage of Amalgam Restorations after Exposure to Electromagnetic Fields of a Commercial Hair Dryer: An Ex-Vivo Study
This ex-vivo experimental study tested whether electromagnetic fields from a commercial hair dryer affect microleakage of class V dental amalgam restorations in 100 extracted human teeth. Several exposure groups showed significantly higher dye-penetration microleakage scores than the unexposed control, while one exposure condition did not differ from control. The authors conclude that hair-dryer EMF exposure can increase microleakage and potentially compromise restoration integrity.
Radiofrequency electromagnetic fields reduce bumble bee visitation to flowers
This blinded, two-year study examined whether RF-EMF exposure at 2.4 and 5.8 GHz affects pollinator visitation to Salvia and Lavandula. The authors report no significant effect on honey bee visitation rates. They report a significant reduction in bumble bee visits per observation period under RF-EMF exposure, which they frame as a potential risk warranting further long-term research.
Perspectives on terahertz honeybee sensing
This paper describes measurements and simulations to support terahertz (THz) sensing of European honey bees for environmental monitoring. It reports dielectric characterization of bee body parts across 1–500 GHz, scattering-based validation of 3D-printed bee mockups, and THz imaging demonstrating detailed anatomical visualization. The work includes dosimetric simulations at 300 GHz to evaluate feasibility of non-invasive, continuous monitoring and notes potential relevance to assessing high-frequency EMF impacts on insect health and habitat safety.
Greater prevalence of symptoms associated with higher exposures to mobile phone base stations in a hilly, densely populated city in Mizoram, India
This cross-sectional study compared 183 higher-exposed residents with 126 matched reference residents and assessed symptoms via questionnaire alongside in-home RF-EMF power density measurements from mobile phone base stations. Higher exposure (including proximity within 50 m and power densities of 5–8 mW/m2) was reported to be associated with increased symptom prevalence across mood-energy, cognitive-sensory, inflammatory, and anatomical categories. The authors conclude that current public exposure limits may be inadequate for long-term, non-thermal biological impacts and call for precautionary policy updates.
Trends in Malignant and Benign Brain Tumor Incidence and Mobile Phone Use in the U.S. (2000-2021): A SEER-Based Study
This SEER-based ecological study examined U.S. trends (2000–2021) in malignant and benign brain tumor incidence and compared them with national mobile phone subscription trends. Malignant brain tumor incidence in adolescents and adults declined slightly, while benign brain tumor incidence increased over time; temporal lobe tumors and benign acoustic neuromas showed little change. The authors interpret these patterns as not supporting an association between mobile phone use and increased brain cancer risk, while recommending continued surveillance given rising benign tumor incidence and potential latency.
5G Radio-Frequency-Electromagnetic-Field Effects on the Human Sleep Electroencephalogram: A Randomized Controlled Study in CACNA1C Genotyped Volunteers
This randomized, double-blind, sham-controlled study tested whether CACNA1C rs7304986 genotype modifies sleep EEG responses to 5G RF-EMF exposure. The authors report a genotype-by-exposure interaction, with 3.6 GHz exposure in T/C carriers associated with a faster NREM sleep spindle center frequency versus sham. The abstract also notes longer sleep latency in T/C compared with T/T carriers, and concludes that genetically susceptible groups may show differential physiological responses to 5G RF-EMF.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.
Does Electromagnetic Pollution in the ART Laboratory Affect Sperm Quality? A Cross-Sectional Observational Study.
This cross-sectional observational study assessed sperm motility after one hour of in vitro exposure of semen samples to EMFs from different laboratory sources in an IVF setting. It reports a statistically significant reduction in progressive sperm motility after exposure to mobile phones and Wi-Fi repeaters, while other EMF-emitting equipment showed no significant effect. The authors interpret the findings as indicating a potential negative impact of specific RF sources and call for further research, alongside practical mitigation suggestions in IVF laboratories.
A novel approach for assessments of radiofrequency electromagnetic fields exposure in buildings near telecommunication infrastructure
This paper proposes a new methodology to better assess indoor RF-EMF exposure in buildings near telecommunication base station antennas by refining measurement-point selection. Implemented in four multi-storey buildings in Natal, Brazil, indoor electric field peaks and averages were reported to be substantially higher than ground-level measurements. Although the highest indoor levels remained below ICNIRP recommended limits, the authors argue current regulatory evaluation methods may underestimate indoor exposure in certain building locations.
Auto-Induced Downlink Radiofrequency Electromagnetic Field Exposure at 3.5 GHz With Focusing Near the Head
This exposure-assessment study uses FDTD simulations to evaluate auto-induced downlink RF-EMF exposure at 3.5 GHz when downlink energy is focused toward user equipment near the head. Exposure varied substantially by device position (ear, eyes, nose) and by the precoding technique used. The authors report that the choice of normalization strategy can produce cases where ICNIRP basic restrictions are exceeded even when reference levels appear compliant, motivating a precautionary framing for compliance assessment.
Exposure to 26.5 GHz, 5G modulated and unmodulated signal, does not affect key cellular endpoints of human neuroblastoma cells
This in vitro study examined whether 26.5 GHz millimeter-wave exposure (continuous wave and 5G-modulated) affects key cellular endpoints in human neuroblastoma cells. Cells were exposed for 3 hours at SAR 1.25 W/kg using a reverberation-chamber system, with assessments including cell cycle and DNA damage. The study reports no effects from exposure alone or when combined with the oxidant menadione, while noting that additional studies across varied conditions are needed.
Protective effects of quercetin against 3.5 GHz RF radiation-induced thyroid dysfunction and oxidative stress in rats
This rat study examined repeated 3.5 GHz RF exposure (2 hours/day, 5 days/week for 30 days) and thyroid-related outcomes, with and without quercetin. The abstract reports altered thyroid hormones (lower T3/T4, higher TSH) and increased oxidative stress in thyroid tissue after RF exposure. Quercetin appeared partially protective, though effects were not uniformly statistically significant, and SAR simulations indicated relatively higher absorption in the thyroid region.
The effects of short-term and long-term 2100 MHz radiofrequency radiation on adult rat auditory brainstem response
This animal study examined 2100 MHz radiofrequency radiation exposure effects on auditory brainstem responses and brain oxidative/ultrastructural markers in adult rats. The 1-week exposure group showed prolonged ABR latencies and biochemical/structural changes consistent with oxidative stress and cellular injury. The authors report no harmful effects in the 10-week exposure condition with rest days under the studied protocol.