Archive
2 posts3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.
Electromagnetic wireless remote control of mammalian transgene expression
This animal proof-of-concept study describes an engineered nanoparticle–cell interface (EMPOWER) enabling wireless regulation of transgene expression using a 1-kHz magnetic field. Chitosan-coated multiferroic nanoparticles reportedly generate intracellular ROS that activates KEAP1/NRF2 biosensors connected to ROS-responsive promoters. In a mouse model of type 1 diabetes, implanted engineered cells expressing an EMPOWER-controlled insulin system reportedly normalized blood glucose in response to a weak magnetic field.