Archive

7 posts

Electromagnetic Exposure from RF Antennas on Subway Station Attendant: A Thermal Analysis

Research PubMed: RF-EMF health Jan 28, 2026

This paper reports a multiphysics electromagnetic–thermal simulation of radiofrequency (RF) antenna exposure for a subway station attendant, estimating specific absorption rate (SAR) and temperature rise in the trunk and selected organs at 900, 2600, and 3500 MHz. Using a COMSOL-based model with a detailed human anatomy representation, the authors found simulated SAR and temperature increases that they state are well below ICNIRP occupational exposure limits. The study concludes that RF emissions from antennas in the modeled subway environment pose low health risk for female attendants with similar characteristics to the model used, while noting the work is based on simulations rather than measurements.

Parametric analysis of electromagnetic wave interactions with layered biological tissues for varying frequency, polarization, and fat thickness

Research PubMed: RF-EMF health Dec 26, 2025

This PubMed-listed study models how RF electromagnetic waves interact with a simplified three-layer tissue structure (skin–fat–muscle) across common ISM bands (433, 915, 2450, 5800 MHz), varying polarization (TE/TM), incidence angle, and fat thickness. Using a custom MATLAB pipeline combining multilayer transmission-line methods, Cole–Cole dielectric parameters, and a steady-state Pennes bioheat solution, the authors estimate reflection, absorption, and resulting temperature rise. The simulations report small temperature increases at lower frequencies (433–915 MHz) and larger superficial heating at 5.8 GHz under the modeled conditions, highlighting how fat thickness and wave parameters modulate dosimetry and thermal outcomes.

MrBeast: If You’re Going to Launch “Beast Mobile,” Don’t Put a Microwave Transmitter in Kids’ Pockets Without a LiFi Exit

Independent Voices RF Safe Dec 17, 2025

RF Safe argues that a potential MrBeast-branded mobile service (“Beast Mobile”) could drive high adoption among children and therefore raises ethical concerns about children’s exposure to radiofrequency (RF) emissions from always-on, body-worn devices. The post claims the scientific and legal context has shifted and contends that relying on existing regulatory compliance is insufficient, urging a “LiFi compatibility plan” as an exposure-reduction alternative. It cites modeling literature about potentially higher localized absorption in children and references a 2025 systematic review it says found increased cancer incidence in RF-exposed experimental animals, while framing the overall situation as negligence if child-focused marketing proceeds without additional safeguards.

The modeling of the interaction of pulsed 5G/6G signals and the fine structure of human skin

Research RF Safe Research Library Jan 1, 2025

This paper uses advanced electromagnetic simulations of human skin microstructure to model exposure to realistic pulsed 5G/6G signals at 3.5, 27, 77, and 300 GHz. It reports localized, inhomogeneous absorption patterns linked to sweat glands and blood vessels, suggesting that treating skin as homogeneous may miss hotspots. The authors conclude that SAR-based standards may be inadequate for mmWave/sub-THz exposures and could underestimate potential risks, including possible nerve excitation.

Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies

Research RF Safe Research Library Jan 1, 2025

This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.

Protective effects of quercetin against 3.5 GHz RF radiation-induced thyroid dysfunction and oxidative stress in rats

Research RF Safe Research Library Jan 1, 2025

This rat study examined repeated 3.5 GHz RF exposure (2 hours/day, 5 days/week for 30 days) and thyroid-related outcomes, with and without quercetin. The abstract reports altered thyroid hormones (lower T3/T4, higher TSH) and increased oxidative stress in thyroid tissue after RF exposure. Quercetin appeared partially protective, though effects were not uniformly statistically significant, and SAR simulations indicated relatively higher absorption in the thyroid region.

The Effect of Proximity Sensor & Grip Sensor Use on Specific Absorption Rate (SAR) in Smartphones

Research RF Safe Research Library Jan 1, 2025

This engineering study examined how smartphone proximity and grip sensors affect SAR during LTE and 5G NR operation in a 3D measurement environment. The abstract reports that enabling these sensors reduces SAR relative to being turned off, with reductions varying by sensor and frequency. The authors attribute the reduction to sensor-driven power management and transmission power adjustment.

Page 1 / 1