Archive
31 postsFilters: tag: specific-absorption-rate Clear
RF Safe Is Built on Tools, Not Hype: The SAR Database, the 4,000+ Study Research Viewer, and the TruthCase Standard
RF Safe presents itself as an RF exposure advocacy and education project promoting “RF exposure literacy,” safer-use habits, and updated safety frameworks beyond thermal-only assumptions. The post highlights RF Safe’s tools, including a SAR comparison database based on FCC SAR data, a public research viewer described as containing 4,000+ peer-reviewed studies, and its “TruthCase”/editorial standards. It argues that non-thermal biological interactions are reported in experimental literature and that compliance with current SAR limits does not necessarily reflect optimal real-world exposure outcomes.
Doxorubicin-induced cardiotoxicity under 28 GHz 5G-band electromagnetic radiation in rats: Insights into the mitigative role of vitamin C
This animal study tested whether short-term 28 GHz (5G-band) millimeter-wave exposure modifies doxorubicin-induced cardiotoxicity in male rats and whether vitamin C mitigates effects. Co-exposure to 28 GHz EMR was reported to worsen several indices of DOX-related cardiac injury (including CAT reduction, increased BAX expression, and QT prolongation), while vitamin C provided partial attenuation. The authors emphasize that results are limited to a short-duration preclinical model and that human relevance remains preliminary.
Ameliorative Role of Coenzyme Q10 in RF Radiation-Associated Testicular and Oxidative Impairments in a 3.5-GHz Exposure Model
This animal experiment assessed GSM-modulated 3.5 GHz RF exposure in male Wistar rats and reported hormonal, oxidative, and histological changes consistent with testicular impairment. RF exposure was associated with lower testosterone, LH, and FSH, higher oxidative stress (increased MDA and TOS), and degenerative testicular histology. Coenzyme Q10 supplementation partially mitigated several reported changes. The authors caution against generalizing these results to FR1 5G NR signals and call for further research.
Radio Frequency Exposure in Military Contexts: A Narrative Review of Thermal Effects and Safety Considerations
This narrative review focuses on RF exposure in military contexts, emphasizing thermal effects as the established mechanism of harm and discussing safety limits set by bodies such as ICNIRP and IEEE. It reports that whole-body SAR limits (≤4 W/kg) generally prevent dangerous core temperature rises, but localized heating risks may persist for tissues like skin and eyes, especially when thermoregulation is impaired. The review highlights CEM43 as a potentially useful thermal-dose metric but notes complexity for transient exposures and calls for improved models and methods across relevant frequency bands.
Model Variability in Assessment of Human Exposure to Radiofrequency Fields
This review examines how variability in computational dosimetry models affects assessment of human RF exposure from MHz to terahertz frequencies, focusing on SAR, absorbed power density, and temperature rise. It reports that anatomical scaling and model choices can drive meaningful differences in predicted SAR (including higher values in children/smaller models), while temperature-rise predictions are especially sensitive to thermophysiological parameters and vascular modeling. The authors indicate that computed variability remains within ICNIRP/IEEE safety margins but argue that uncertainties warrant ongoing research and refinement as new technologies (e.g., 6G) emerge.
Radiofrequency radiation-induced gene expression
This review summarizes studies reporting radiofrequency radiation (RFR)-associated changes in gene expression across biological systems. Reported affected genes relate to cellular stress responses, oxidative processes, apoptosis, DNA damage detection/repair, protein repair, and neural function regulation. The authors highlight reported gene expression effects at or below 0.4 W/kg SAR and argue this challenges current guideline assumptions, while noting that not all studies find significant effects.
Effects of Simultaneous In-Vitro Exposure to 5G-Modulated 3.5 GHz and GSM-Modulated 1.8 GHz Radio-Frequency Electromagnetic Fields on Neuronal Network Electrical Activity and Cellular Stress in Skin Fibroblast Cells
This in-vitro study exposed primary cortical neurons and human immortalized skin fibroblasts to simultaneous 5G-modulated 3.5 GHz and GSM-modulated 1.8 GHz RF-EMF at SARs of 1 or 4 W/kg. It reports no significant changes in neuronal network firing/bursting activity and no alteration of mitochondrial ROS in fibroblasts. Stress-related signaling readouts showed only minor, threshold-level variations without a consistent pattern, and no HSF1 activation was observed. Overall, the authors conclude there is no strong evidence of biological effects under these exposure conditions.
Electromagnetic Field Stimulation Effects on Intrinsically Disordered Proteins and Their Role in Aging and Neurodegeneration
This review discusses preclinical studies suggesting non-ionizing EMF exposures can produce beneficial biological effects, while noting ongoing controversy about mechanisms. It reports evidence of EMF-associated conformational changes in intrinsically disordered proteins relevant to neurodegeneration and describes RF exposure conditions that activate proteostasis and autophagy in cell and animal models. The authors propose a quantum-biophysical framework involving the water-protein interface and suggest potential human applications within regulatory safety thresholds.
Thermal and SAR-Based Limits for Human Skin Exposed to Terahertz Radiation
This conference paper uses COMSOL Multiphysics simulations to evaluate thermal and SAR-based exposure limits for modeled human skin exposed to terahertz radiation (0.1–5 THz). The authors report negligible temperature increases at power densities consistent with keeping SAR below 1.6 W/kg, but note that higher power densities can yield minimal heating while producing SAR values above recognized safety thresholds. They conclude that existing sub-THz standards are not directly transferable to the full THz band and call for updated guidelines, especially for prolonged exposure.
Investigation of fetal exposure to electromagnetic waves between 2.45 and 5 GHz during pregnancy
This dosimetry study simulated fetal RF-EMF exposure between 2.45 and 5 GHz during the second trimester, estimating SAR10g in fetal brain and lungs. The presence of a belly-button piercing increased SAR, with maxima reported at 2.45 GHz (16 mW/kg in lungs; 14 mW/kg in brain). Despite these increases, all SAR values were reported to remain below IEEE and ICNIRP limits, while the authors note a precautionary implication regarding metal objects during pregnancy.
Numerical analysis of the thermal effects on adult with brain pacemaker implantation exposed to WIFI antennas
This numerical study modeled RF exposure from WiFi/5G-type antennas near a 3D brain model with implanted brain pacemakers relevant to Parkinson’s disease. SAR and temperature increases were reported to remain below ICNIRP 2020 limits across modeled conditions, with maxima at a 90° antenna-to-brain angle. Despite compliance with SAR/temperature limits, the authors report modeled thermal strain and tissue displacement that could affect postoperative efficacy, leading them to recommend caution and increased distance from phones.
Altered development in rodent brain cells after 900 MHz radiofrequency exposure
This animal and in vitro study examined non-thermal 900 MHz RF-EMF exposure during prenatal and postnatal development at 0.08 and 0.4 W/kg SAR. The authors report changes consistent with altered neurodevelopment, including reduced BDNF, reduced in vivo cell proliferation, and disrupted synaptic balance in rat pup brain regions. In vitro, exposed neural stem cells showed increased apoptosis and DNA double-strand breaks and shifts in cell populations toward glial lineages. The authors conclude that regulatory-level 900 MHz exposure can disrupt key neurodevelopmental processes in rodents.
Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells
This in vitro study tested whether 5G-modulated 3.5 GHz RF-EMF exposure affects oxidative stress and DNA repair in human skin cells. Under acute exposure conditions (up to 24–48h) at SARs up to 4 W/kg, the authors report no significant changes in ROS markers, no adaptive response to oxidative challenge, and no impairment of UV-B–related CPD repair via nucleotide excision repair. The authors note that acute in vitro results may not directly generalize to chronic or real-life exposures.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
The modeling of the interaction of pulsed 5G/6G signals and the fine structure of human skin
This paper uses advanced electromagnetic simulations of human skin microstructure to model exposure to realistic pulsed 5G/6G signals at 3.5, 27, 77, and 300 GHz. It reports localized, inhomogeneous absorption patterns linked to sweat glands and blood vessels, suggesting that treating skin as homogeneous may miss hotspots. The authors conclude that SAR-based standards may be inadequate for mmWave/sub-THz exposures and could underestimate potential risks, including possible nerve excitation.
Exploring research trends in health effects of 5G antennas: a bibliometric analysis
This paper presents a bibliometric analysis of Web of Science literature (2012–2025) on potential health effects related to 5G antennas. It reports a marked increase in publications in the past five years, with substantial attention to dosimetric metrics (SAR and power density) and their regulatory limits. The authors forecast continued growth in the field and emphasize the need for ongoing research and interdisciplinary collaboration focused on potential health risks and compliance.
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Exposure to 26.5 GHz, 5G modulated and unmodulated signal, does not affect key cellular endpoints of human neuroblastoma cells
This in vitro study examined whether 26.5 GHz millimeter-wave exposure (continuous wave and 5G-modulated) affects key cellular endpoints in human neuroblastoma cells. Cells were exposed for 3 hours at SAR 1.25 W/kg using a reverberation-chamber system, with assessments including cell cycle and DNA damage. The study reports no effects from exposure alone or when combined with the oxidant menadione, while noting that additional studies across varied conditions are needed.
Protective effects of quercetin against 3.5 GHz RF radiation-induced thyroid dysfunction and oxidative stress in rats
This rat study examined repeated 3.5 GHz RF exposure (2 hours/day, 5 days/week for 30 days) and thyroid-related outcomes, with and without quercetin. The abstract reports altered thyroid hormones (lower T3/T4, higher TSH) and increased oxidative stress in thyroid tissue after RF exposure. Quercetin appeared partially protective, though effects were not uniformly statistically significant, and SAR simulations indicated relatively higher absorption in the thyroid region.
Characterization of the Core Temperature Response of Free-Moving Rats to 1.95 GHz Electromagnetic Fields
This animal study measured core body temperature in free-moving male and female Sprague Dawley rats during and after 3-hour exposure to 1.95 GHz RF-EMF at multiple whole-body average SAR levels. A measurable thermal response was reported at 4 W/kg, while lower SAR conditions showed smaller or no significant temperature increases. The authors note that temperature dropped quickly after exposure ended, implying post-exposure measurements may underestimate peak heating.
SAR Estimations in a Classroom with Wireless Computers
This study simulated 1 g and 10 g peak spatial SAR (psSAR) in classroom settings where each student uses a Wi‑Fi laptop at 2.45 GHz and 100 mW. Maximum simulated psSAR values were reported to be below ICNIRP and IEEE recommended limits, but desk spacing and multi-user configurations could substantially increase psSAR compared with a single-user setup. The authors emphasize that long-term low-level exposure, particularly for children, remains a concern and recommend mitigation via increased spacing and wired connections.
Assessment of RF EMF Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics
This modeling study assessed RF-EMF exposure from a 5.9 GHz V2V monopole array antenna integrated into a car roof shark-fin antenna. Using COMSOL simulations with an adult male body model inside a vehicle, the authors estimated localized and whole-body SAR and associated core temperature rise over a 30 min averaging period. Reported SAR and temperature rise values were below ICNIRP occupational thermal-based restrictions, leading the authors to conclude the exposure does not pose a threat under the studied conditions.
The Effect of Proximity Sensor & Grip Sensor Use on Specific Absorption Rate (SAR) in Smartphones
This engineering study examined how smartphone proximity and grip sensors affect SAR during LTE and 5G NR operation in a 3D measurement environment. The abstract reports that enabling these sensors reduces SAR relative to being turned off, with reductions varying by sensor and frequency. The authors attribute the reduction to sensor-driven power management and transmission power adjustment.
Repeated Head Exposures to a 5G-3.5 GHz Signal Do Not Alter Behavior but Modify Intracortical Gene Expression in Adult Male Mice
This animal study examined repeated asymmetrical head exposure to a 5G-modulated 3.5 GHz signal in adult male mice for six weeks. It reports no significant changes in locomotion, anxiety, or object-based memory performance under the tested conditions. However, it found statistically significant but limited cortical gene expression changes (<1% of expressed genes), including enrichment for glutamatergic synapse-related genes and lateralized differences involving mitochondrial genome-encoded genes. The authors caution that potential health risks from these intracortical transcriptomic modifications should not be downplayed and note uncertainties about longer exposures and other populations.