Archive
6 postsFilters: tag: sperm-viability Clear
Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats
This rat study examined 60-day RF-EMF exposure at 3.5 GHz and 24 GHz for 1 or 7 hours per day and assessed testicular cytokines, apoptosis-related gene expression, and sperm quality. The authors report changes consistent with altered immune signaling and pro-apoptotic pathways, alongside reduced sperm parameters (frequency- and duration-dependent). The conclusion frames these findings as an EMF safety concern and suggests longer daily exposure worsened negative effects.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.
Effects of coenzyme Q10 on sperm parameters and pathological changes induced by Wi-Fi waves in the testicular tissue of rats
This animal study exposed rats to Wi‑Fi waves for 7 hours/day for 2 months and assessed sperm parameters, serum testosterone, and testicular/epididymal pathology, with and without coenzyme Q10 (CoQ10). The authors report that Wi‑Fi exposure was linked to worse sperm parameters, lower testosterone, and adverse testicular pathology. CoQ10 supplementation during exposure was reported to mitigate these changes compared with Wi‑Fi exposure alone.
An 1800 MHz Electromagnetic Field Affects Hormone Levels, Sperm Quality, and Behavior in Laboratory Rats
This animal study exposed rats to a 1800 MHz electromagnetic field for 12 weeks and assessed hormones, sperm quality, and behavior. The abstract reports increased corticosterone, decreased thyroid-stimulating hormone, reduced sperm motility/viability, and increased anxiety-like behavior in exposed rats. Some hormonal changes reportedly persisted for at least 2 weeks after exposure ended, and the authors frame the results as indicating adverse endocrine, reproductive, and behavioral effects.
Histomorphometry and Sperm Quality in Male Rats Exposed to 2.45 GHz Wi-Fi
This animal study exposed adult male rats to 2.45 GHz Wi‑Fi from an active router for 4 or 24 hours daily over eight weeks and assessed reproductive organ histology and sperm parameters. The authors report histological changes in testes and epididymis, multifocal atypical hyperplasia in seminal vesicles, reduced seminiferous tubule diameter, and reduced spermatogenesis index in exposed groups. Sperm concentration decreased in both exposed groups, motility decreased in the 4-hour group, and viability increased in the 24-hour group, leading to an overall interpretation of potential reproductive risk under the studied conditions.
The effects of radiofrequency exposure on male fertility: A systematic review of human observational studies with dose-response meta-analysis (SR 3)
This systematic review and dose-response meta-analysis synthesizes human observational studies on radiofrequency EMF exposure and male fertility outcomes. It reports evidence of an association between RF exposure and poorer sperm parameters, including reduced quality, motility, and viability. The authors frame the findings as consistent with potential reproductive health risks and call for continued risk assessment and guideline development.