Archive
13 postsFilters: tag: radiofrequency-electromagnetic-fields Clear
The International Collaborative Animal Study of Mobile Phone Radiofrequency Radiation Carcinogenicity and Genotoxicity: The Japanese Study
This international collaborative animal study (Japanese arm) evaluated carcinogenicity and genotoxicity in male Sprague Dawley rats exposed long-term to 900 MHz CDMA-modulated RF-EMFs at 4 W/kg whole-body SAR. The abstract reports no statistically significant increases in neoplastic or non-neoplastic lesions in major organs and no evidence of genotoxicity on comet or micronucleus testing. The authors conclude the findings provide strong evidence of no reproducible carcinogenic or genotoxic effects under the studied conditions.
Behaviour and reproduction of Drosophila melanogaster exposed to 3.6 GHz radio-frequency electromagnetic fields
This animal study assessed whether 3.6 GHz RF-EMF exposure affects behaviour and reproduction in adult Drosophila melanogaster, using micro-CT-based digital-twin dosimetry and numerical simulations. It reports no significant changes in locomotor activity after 5 days at 5.4–9 V/m and no effect on fecundity over 48 hours at the tested absorbed power. The authors note that effects could still be possible at other exposure levels or in different developmental stages.
Exposure Variability Between 1- or 6-Minute and 30-Minute Averaging Time Lengths in Radiofrequency-Electromagnetic Field Exposure Monitoring
This exposure assessment study compared RF-EMF measurements averaged over 1, 6, and 30 minutes using contiguous 1-minute data collected over 30 minutes at four indoor/outdoor sites across 15 frequency bands. Relative deviations between shorter averaging times and 30-minute averages were largely within ±3 dB. However, statistical comparisons of overall exposure variability between 1- or 6-minute and 30-minute averaging produced inconsistent results, with broadcast and most mobile services <2 GHz appearing broadly similar between 1- and 6-minute averaging.
Differential metabolic responses of mouse Leydig and spermatogonia cells to radiofrequency electromagnetic field exposure
This in vitro study used LC-MS metabolomics to assess how continuous versus intermittent RF-EMF irradiation affects mouse Leydig (TM3) and spermatogonia (GC-1) cells. The authors report stronger metabolic disturbances in TM3 cells under continuous exposure, including changes in amino acid and glutathione-related pathways, while intermittent exposure mainly affected fatty acyl and purine-related metabolism. GC-1 cells were reported to be less sensitive, and ADP changes were proposed as a potential metabolic signature. The authors interpret these metabolic disturbances as suggesting potential reproductive health risks.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.
Bacterial Adaptation to Radiofrequency Electromagnetic Fields Based on Experiences from Ionizing Radiation
This 2025 review summarizes historical and modern literature on how bacteria may adapt to radiofrequency electromagnetic fields from common sources such as mobile phones and Wi-Fi. It argues that RF-EMF exposure can influence bacterial survival mechanisms and could potentially compromise therapeutic interventions by promoting increased resistance. The authors frame these possibilities as a public health concern and call for continued research and precaution.
Impact of Radiofrequency Electromagnetic Fields on Cardiac Activity at Rest: A Systematic Review of Healthy Human Studies
This systematic review evaluated evidence on RF-EMF exposure and cardiac activity (heart rate and heart rate variability) in healthy humans at rest. Across 28 studies spanning 100 to 110,000 MHz and exposures from minutes to a week, most studies reported no significant effects on resting heart rate, and HRV findings were largely null under calm conditions. Some position-dependent HRV changes were reported, and the authors note possible effects during physiological challenges, but conclude evidence is insufficient for firm conclusions beyond resting healthy populations.
Effects of coenzyme Q10 on sperm parameters and pathological changes induced by Wi-Fi waves in the testicular tissue of rats
This animal study exposed rats to Wi‑Fi waves for 7 hours/day for 2 months and assessed sperm parameters, serum testosterone, and testicular/epididymal pathology, with and without coenzyme Q10 (CoQ10). The authors report that Wi‑Fi exposure was linked to worse sperm parameters, lower testosterone, and adverse testicular pathology. CoQ10 supplementation during exposure was reported to mitigate these changes compared with Wi‑Fi exposure alone.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.
In-Situ Measurements of Radiofrequency Electromagnetic Fields Measurements Around 5G Macro Base Stations in the UK
This exposure assessment performed RF spot measurements in line-of-sight to 56 active 5G macro base stations across 30 publicly accessible UK locations. Power density was measured across 420 MHz–6 GHz under multiple scenarios (background, streaming, downlink speed test, and extrapolated SS-RSRP decoding). Reported total RF and 5G-specific levels were within 1998 ICNIRP public reference levels, with 4G downlink contributing most of the measured exposure.
Potential Impacts of Radiofrequency Electromagnetic Fields on the Central Nervous System, Brain Neurotransmitter Dynamics and Reproductive System
This review discusses potential impacts of radiofrequency electromagnetic fields from technologies such as Wi‑Fi and mobile phones on the central nervous system, neurotransmitter dynamics, and reproductive health. It describes proposed mechanisms including oxidative stress, thermal effects, altered neurotransmitter activity, ion channel changes, and neuronal apoptosis, while acknowledging conflicting evidence. The authors note that Wi‑Fi RF exposure has not been confirmed to exceed safety guidelines but argue that updated standards and long-term studies are needed, particularly for children/adolescents and in the context of expanding technologies such as 5G.
Prospective cohort study on non-specific symptoms, cognitive, behavioral, sleep and mental health in relation to electronic media use and transportation noise among adolescents (HERMES): study protocol
This protocol describes the third wave of the HERMES prospective adolescent cohort in Switzerland, with follow-up every four months and at one year. The study will assess electronic media use, modeled RF-EMF and transportation noise exposures, and a range of outcomes including cognition, behavior, sleep, mental health, and non-specific symptoms. A subsample will undergo personal RF-EMF measurements and accelerometer-based sleep/physical activity tracking.
Relationship between radiofrequency-electromagnetic radiation from cellular phones and brain tumor: meta-analyses using various proxies for RF-EMR exposure-outcome assessment
Moon et al. (2024) report a systematic review and meta-analysis on cellular phone RF-EMR and brain tumor risk. The abstract summary states elevated risks for three brain tumor types in analyses considering ipsilateral (same-side) phone use and reports increased risk with heavy and long-term use. The text also highlights disagreement with the 2024 WHO review and raises methodological concerns about WHO conclusions.