Archive
5 postsFilters: tag: cgas-sting Clear
What non‑native EMFs really do — Ion Timing Fidelity under RF exposure, from S4 voltage sensing to mitochondrial ROS and immune dysregulation
This RF Safe article argues that “non-native” radiofrequency (RF) exposures can deterministically disrupt voltage-gated ion channel timing (via the S4 voltage sensor), leading downstream to altered calcium signaling, mitochondrial reactive oxygen species (ROS), and immune dysregulation without tissue heating. It presents a proposed mechanistic chain linking RF exposure to oxidative stress, inflammation, and autoimmune-like states, and cites assorted animal studies and reviews as supportive. The piece is framed as a coherent explanatory model rather than a single new study, and specific cited findings are not fully verifiable from the excerpt alone.
Ion Timing Fidelity under wireless exposure — from the S4 voltage sensor to mitochondrial oxidative stress, innate activation, and organ‑level inflammation
This RF Safe article argues that pulsed, low-frequency-modulated wireless radiofrequency exposures could disrupt voltage-gated ion channel timing (via the S4 voltage sensor), leading to altered immune-cell signaling, mitochondrial oxidative stress, and downstream innate immune activation and inflammation. It presents a mechanistic narrative linking small membrane-potential shifts to changes in calcium and proton channel behavior, then to mitochondrial reactive oxygen species and inflammatory pathways (e.g., cGAS–STING, TLR9, NLRP3). The post cites animal findings and a described 2025 mouse gene-expression study as supportive, but the piece itself is not a peer-reviewed study and some claims are presented as deterministic without providing full methodological details in the excerpt.
Ion Timing Fidelity under RF exposure: from S4 voltage sensing to mitochondrial ROS, mtDNA release, and immune dysregulation
This RF Safe article argues that persistent low-intensity, pulsed RF exposure could disrupt the timing of voltage-gated ion channel activity by affecting the S4 voltage-sensing region, leading to downstream changes in calcium/proton signaling, mitochondrial stress, and immune dysregulation. It proposes a mechanistic chain from altered ion gating to increased mitochondrial ROS, mitochondrial DNA release, and activation of innate immune pathways (e.g., cGAS-STING, TLR9, NLRP3). The post cites “multiple reviews and experiments” and references animal findings and a 2025 mouse study, but the provided text does not include enough study details to independently assess the strength of the evidence.
RFR can drive autoimmunity through the S4 voltage sensor
RF Safe argues that radiofrequency radiation (especially pulsed or modulated signals with low-frequency components) can alter local membrane potentials at nanometer scales where voltage-gated ion channel S4 sensors operate. It claims these shifts could change ion channel gating in immune cells, altering calcium and proton signaling, increasing oxidative stress, and promoting innate immune activation that may contribute to autoimmune-like inflammation. The piece presents a mechanistic causal chain and highlights heart and nerve tissue as potentially more susceptible due to high ion-channel density and mitochondrial content, but does not present new study data in the provided text.
Restoring Bioelectric Timing Fidelity to Prevent Immune Dysregulation
RF Safe argues that non-thermal biological effects from low-frequency/pulsed RF-EMF exposures can be explained by a “timing-fidelity” mechanism involving voltage-gated ion channel (VGIC) gating perturbations. The post links altered ion-channel timing to downstream immune signaling changes (e.g., Ca²⁺ dynamics, NFAT/NF-κB transcription), mitochondrial stress, and inflammatory pathway activation, and suggests this could relate to reported animal cancer signals and reproductive endpoints. It proposes a set of “falsifiable tests” and calls for a policy/engineering program (“Clean Ether Act”) emphasizing RF temporal patterning and shifting some connectivity to LiFi.