Archive

4 posts

Filters: tag: cell-viability Clear

Neurotoxic effects of 3.5 GHz GSM-like RF exposure on cultured DRG neurons: a mechanistic insight into oxidative and apoptotic pathways

Research RF Safe Research Library Jan 1, 2026

This in vitro study examined strictly non-thermal, GSM-like 3.5 GHz RF-EMF exposure in cultured mouse dorsal root ganglion neurons for 1–24 hours. The authors report time-dependent reductions in cell viability alongside increased ROS and changes consistent with mitochondria-mediated apoptosis (e.g., Bax/caspase-3 up, cytochrome c release, Bcl-2 down) and increased p75NTR. They conclude these findings provide mechanistic evidence of peripheral neuronal vulnerability to mid-band RF exposure and call for further in vivo research.

Exposure of human lymphocytes to sweeping-frequency extremely low frequency magnetic field

Research RF Safe Research Library Jan 1, 2025

This in vitro study exposed human umbilical cord blood lymphocytes to a sinusoidal sweeping-frequency ELF magnetic field (3–26 Hz) for 48 hours at amplitudes from 6 to 24 μT. It reports no statistically significant effects on DNA damage/repair foci or apoptosis measures overall. A non-significant trend at 8 μT showed lower γH2AX foci (p = .064) and data suggesting fewer viable cells at the same intensity, which the authors discuss as potentially protective against DNA double-strand breaks.

Proteomic Characterization of Human Peripheral Blood Mononuclear Cells Exposed to a 50 Hz Magnetic Field

Research RF Safe Research Library Jan 1, 2025

This in vitro study compared proteomic profiles of PBMCs from three human donors after 24-hour exposure to a 50 Hz, 1 mT extremely low-frequency magnetic field versus unexposed cells. The abstract reports broad protein expression changes, including upregulation of proteins associated with metabolic processes and downregulation of proteins linked to T cell costimulation/activation and immune processes. No effects were observed on cell proliferation, viability, or cell cycle progression. The authors interpret the proteomic shifts as metabolic reprogramming with potential implications for immune regulation.

The Frequency of a Magnetic Field Determines the Behavior of Tumor and Non-Tumor Nerve Cell Models

Research RF Safe Research Library Jan 1, 2025

This in vitro study exposed glioblastoma (CT2A), neuroblastoma (N2A), and non-tumor astrocyte (C8D1A) cell models to a 100 μT magnetic field across 20–100 Hz for 24–72 hours. The abstract reports decreased viability and proliferation in the tumor cell models within a frequency window centered at 50 Hz, while astrocyte viability increased at 20 and 40 Hz. The authors conclude that frequency is a key determinant of cell-type-specific responses consistent with a “biological window” model.

Page 1 / 1