Archive
4 postsAmeliorative Role of Coenzyme Q10 in RF Radiation-Associated Testicular and Oxidative Impairments in a 3.5-GHz Exposure Model
A rat study in Bioelectromagnetics examined GSM-modulated 3.5 GHz RF-EMF exposure (2 h/day for 30 days) and reported adverse changes in male reproductive hormones, oxidative stress markers, and testicular histology. The authors also tested Coenzyme Q10 (CoQ10) and found it partially ameliorated some RF-associated alterations. The paper notes that because the exposure used a GSM-modulated waveform, findings cannot be extrapolated to FR1 5G NR signals, and calls for further research under real-world conditions.
DNA Damage Analysis in Blood Tissue & Physiopathological Evaluation of the Effect of Quercetin on Kidney Tissue in 2600 MHz EMF Exposure
This rat study assessed 30-day 2600 MHz EMF exposure effects on kidney tissue and DNA damage in blood lymphocytes, with an EMF+quercetin group included. Kidney histopathology and immunohistochemistry were reported as similar across groups, and oxidative stress markers did not significantly change. The EMF-only group showed significant DNA damage in lymphocytes by Comet assay.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.
Effects of 700MHz radiofrequency radiation (5G lower band) on the reproductive parameters of female Wistar rats
This animal study examined short- and long-term 700 MHz (lower-band 5G) radiofrequency exposure in female Wistar rats, comparing control, sham, and exposed groups. It reports no DNA damage and no change in estrous cycle length, but increased ovarian oxidative stress markers in exposed animals. Long-term exposure was associated with ovarian histopathological alterations, while estradiol and progesterone stayed within normal ranges and testosterone increased slightly but significantly.