Archive

5 posts

This piece does not argue that radiofrequency (RF) electromagnetic fields “cause” any single disease.

Independent Voices RF Safe Dec 16, 2025

An RF Safe commentary argues that persistent, pulsed “non-native” RF electromagnetic noise can disrupt biological “timing coherence,” leading to downstream “fidelity losses,” particularly in electrically active tissues. It also emphasizes that smartphones are adaptive RF systems that change transmit power and modulation, so accessories that detune antennas or distort near-field conditions may cause phones to transmit harder. The piece cites FTC warnings that partial-shield products can be ineffective and may increase emissions by interfering with signal quality, and it argues that material shielding claims do not directly translate to real-world exposure outcomes.

How non‑native electromagnetic fields, biological timing, and policy lock in converge — and why the Light Age is the only coherent exit

Independent Voices RF Safe Dec 13, 2025

RF Safe argues that modern radiofrequency (RF) exposures are complex (adaptive, nonlinear, geometry- and near-field–dependent) and that biological effects, if any, may be better understood as “timing/coherence” disruptions rather than direct single-cause disease claims. The piece cautions against simplistic “percent blocking” marketing for anti-radiation accessories, claiming real-world emissions can change when antenna boundary conditions are altered. It proposes an explanatory framework (“S4–Mito–Spin”) and suggests a policy/technology “exit” via indoor photonics (Li‑Fi/optical wireless) rather than continued expansion of microwave-based systems, while explicitly stating it does not claim RF causes specific human diseases or that products protect health.

Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones

Research RF Safe Research Library Jan 1, 2025

This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.

Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast

Research RF Safe Research Library Jan 1, 2025

This in vitro study exposed yeast suspensions to 2.45 GHz near-field microwave radiation at 2 cm and 4 cm for 20 or 60 minutes. It reports oxidative-stress-related changes (reduced antioxidant activity with increased membrane permeability) after 20 minutes at 2 cm, an effect not reproduced by conventional heating. The study also reports a trend toward increased DNA damage under both exposure conditions and mild membrane permeability changes after 60 minutes at 4 cm.

The use of different exposure metrics in the research about the health impacts of electromagnetic fields

Research RF Safe Research Library Jan 1, 2024

This policy brief focuses on how RF-EMF exposure should be quantified in health research, emphasizing the role of near-field sources and proposing cumulative dose (J/kg/day) as a health-relevant metric. It reports mean cumulative dose estimates of 0.29 J/kg/day for the whole body and 0.81 J/kg/day for the brain. The brief notes established RF-EMF effects (heating, microwave hearing under highly pulsed radiation, and stimulation) and discusses indications of biological effects below thermal thresholds, while stating that improved metrics do not by themselves confirm harm.

Page 1 / 1