Archive
4 postsDoxorubicin-induced cardiotoxicity under 28 GHz 5G-band electromagnetic radiation in rats: Insights into the mitigative role of vitamin C
This animal study tested whether short-term 28 GHz (5G-band) millimeter-wave exposure modifies doxorubicin-induced cardiotoxicity in male rats and whether vitamin C mitigates effects. Co-exposure to 28 GHz EMR was reported to worsen several indices of DOX-related cardiac injury (including CAT reduction, increased BAX expression, and QT prolongation), while vitamin C provided partial attenuation. The authors emphasize that results are limited to a short-duration preclinical model and that human relevance remains preliminary.
Why the 2025 “5G Skin-Cell Null” Actually Confirms the Density-Dependence of Both Pillars of the Unified Framework
RF Safe comments on a 2025 PNAS Nexus study (Jyoti et al., 2025) reporting no detectable changes in gene expression or methylation in 5G millimeter-wave–exposed human skin cells. The post argues that this “null” result does not indicate biological inertness, but instead supports the site’s proposed “dual-pillar” framework in which effects depend on cell-specific cofactor density and frequency-window/coupling conditions. It contrasts skin-cell findings with claims about rapid blood (RBC) effects from smartphone exposure, presenting this as consistent with differential susceptibility across tissues.
Millimeter-wave high frequency 5G (26 GHz) electromagnetic fields do not modulate human brain electrical activity
This randomized, triple-blind crossover study examined whether 26 GHz (5G millimeter-wave) exposure affects human EEG activity. Thirty-one healthy young adults completed real and sham 26.5-minute exposures at 2 V/m, with EEG recorded before, during, and after exposure. The study reports no significant effects of exposure on delta, theta, alpha, or beta band power across electrode clusters, providing preliminary reassurance under the tested conditions.
Exposure to 26.5 GHz, 5G modulated and unmodulated signal, does not affect key cellular endpoints of human neuroblastoma cells
This in vitro study examined whether 26.5 GHz millimeter-wave exposure (continuous wave and 5G-modulated) affects key cellular endpoints in human neuroblastoma cells. Cells were exposed for 3 hours at SAR 1.25 W/kg using a reverberation-chamber system, with assessments including cell cycle and DNA damage. The study reports no effects from exposure alone or when combined with the oxidant menadione, while noting that additional studies across varied conditions are needed.