Archive
2 postsDifferential metabolic responses of mouse Leydig and spermatogonia cells to radiofrequency electromagnetic field exposure
This in vitro study used LC-MS metabolomics to assess how continuous versus intermittent RF-EMF irradiation affects mouse Leydig (TM3) and spermatogonia (GC-1) cells. The authors report stronger metabolic disturbances in TM3 cells under continuous exposure, including changes in amino acid and glutathione-related pathways, while intermittent exposure mainly affected fatty acyl and purine-related metabolism. GC-1 cells were reported to be less sensitive, and ADP changes were proposed as a potential metabolic signature. The authors interpret these metabolic disturbances as suggesting potential reproductive health risks.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.