Archive
3 postsWhy the 2025 “5G Skin-Cell Null” Actually Confirms the Density-Dependence of Both Pillars of the Unified Framework
RF Safe comments on a 2025 PNAS Nexus study (Jyoti et al., 2025) reporting no detectable changes in gene expression or methylation in 5G millimeter-wave–exposed human skin cells. The post argues that this “null” result does not indicate biological inertness, but instead supports the site’s proposed “dual-pillar” framework in which effects depend on cell-specific cofactor density and frequency-window/coupling conditions. It contrasts skin-cell findings with claims about rapid blood (RBC) effects from smartphone exposure, presenting this as consistent with differential susceptibility across tissues.
Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells
This in vitro study tested whether 5G-modulated 3.5 GHz RF-EMF exposure affects oxidative stress and DNA repair in human skin cells. Under acute exposure conditions (up to 24–48h) at SARs up to 4 W/kg, the authors report no significant changes in ROS markers, no adaptive response to oxidative challenge, and no impairment of UV-B–related CPD repair via nucleotide excision repair. The authors note that acute in vitro results may not directly generalize to chronic or real-life exposures.
5G-exposed human skin cells do not respond with altered gene expression and methylation profiles
This in vitro study exposed human skin cells (fibroblasts and keratinocytes) to 5G-band electromagnetic fields for 2 hours and 48 hours using a fully blinded design. Exposures were up to ten times permissible limits, with sham exposure as a negative control and UV exposure as a positive control. The study reports that observed gene expression and DNA methylation differences were minor and consistent with random variation, supporting no detectable EMF-related effect under the tested conditions.