Archive

8 posts

Exposure to hexavalent chromium and 1800 MHz electromagnetic radiation can synergistically induce intracellular DNA damage in mouse embryonic fibroblasts

Research RF Safe Research Library Jan 1, 2026

This in vitro study tested whether 1800 MHz RF-EMF modifies chemically induced DNA damage in mouse embryonic fibroblasts under non-thermal exposure conditions. RF-EMF alone did not produce detectable DNA damage and did not significantly enhance damage from hydrogen peroxide, 4NQO, or cadmium. In contrast, co-exposure with hexavalent chromium (Cr(VI)) was reported to synergistically increase DNA damage, suggesting a selective co-genotoxic interaction under specific chemical conditions.

Effects of Simultaneous In-Vitro Exposure to 5G-Modulated 3.5 GHz and GSM-Modulated 1.8 GHz Radio-Frequency Electromagnetic Fields on Neuronal Network Electrical Activity and Cellular Stress in Skin Fibroblast Cells

Research RF Safe Research Library Jan 1, 2025

This in-vitro study exposed primary cortical neurons and human immortalized skin fibroblasts to simultaneous 5G-modulated 3.5 GHz and GSM-modulated 1.8 GHz RF-EMF at SARs of 1 or 4 W/kg. It reports no significant changes in neuronal network firing/bursting activity and no alteration of mitochondrial ROS in fibroblasts. Stress-related signaling readouts showed only minor, threshold-level variations without a consistent pattern, and no HSF1 activation was observed. Overall, the authors conclude there is no strong evidence of biological effects under these exposure conditions.

Electromagnetic Field Stimulation Effects on Intrinsically Disordered Proteins and Their Role in Aging and Neurodegeneration

Research RF Safe Research Library Jan 1, 2025

This review discusses preclinical studies suggesting non-ionizing EMF exposures can produce beneficial biological effects, while noting ongoing controversy about mechanisms. It reports evidence of EMF-associated conformational changes in intrinsically disordered proteins relevant to neurodegeneration and describes RF exposure conditions that activate proteostasis and autophagy in cell and animal models. The authors propose a quantum-biophysical framework involving the water-protein interface and suggest potential human applications within regulatory safety thresholds.

Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells

Research RF Safe Research Library Jan 1, 2025

This in vitro study tested whether 5G-modulated 3.5 GHz RF-EMF exposure affects oxidative stress and DNA repair in human skin cells. Under acute exposure conditions (up to 24–48h) at SARs up to 4 W/kg, the authors report no significant changes in ROS markers, no adaptive response to oxidative challenge, and no impairment of UV-B–related CPD repair via nucleotide excision repair. The authors note that acute in vitro results may not directly generalize to chronic or real-life exposures.

Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast

Research RF Safe Research Library Jan 1, 2025

This in vitro study exposed yeast suspensions to 2.45 GHz near-field microwave radiation at 2 cm and 4 cm for 20 or 60 minutes. It reports oxidative-stress-related changes (reduced antioxidant activity with increased membrane permeability) after 20 minutes at 2 cm, an effect not reproduced by conventional heating. The study also reports a trend toward increased DNA damage under both exposure conditions and mild membrane permeability changes after 60 minutes at 4 cm.

Electromagnetic fields and DNA damage

Research RF Safe Research Library Jan 1, 2009

This review discusses the comet assay and summarizes research on non-ionizing EMF exposure and DNA/chromosomal damage. It describes both positive and negative findings across studies, noting no consistent overall pattern for radiofrequency radiation (RFR). The authors nonetheless conclude that under certain exposure conditions RFR appears genotoxic and may affect DNA damage and repair, with evidence discussed as most applicable to exposures typical of cell phone use.

Genetic damage in mammalian somatic cells exposed to radiofrequency radiation: a meta-analysis of data from 63 publications (1990-2005)

Research RF Safe Research Library Jan 1, 2008

A meta-analysis of 63 publications assessed whether radiofrequency (RF) radiation exposure is associated with genetic damage in mammalian somatic cells using multiple genotoxicity endpoints. Overall differences between RF-exposed and control conditions were reported as small, though statistically significant increases were observed for some endpoints under certain exposure conditions. Mean chromosomal aberration and micronucleus indices were reported to fall within historical spontaneous levels, and the analysis found considerable evidence of publication bias.

Biological effects of extremely low frequency electric and magnetic fields: a review

Research RF Safe Research Library Jan 1, 1977

This review summarizes reported biological effects of extremely low frequency (ELF) electric and magnetic fields, describing them as significant and often acting as stressors. Reported outcomes include metabolic, hormonal, and body weight changes in rodents, lethality at high exposure levels in mice and insects, and increased mitotic index in mouse tissues/cells under specified exposure conditions. The review suggests many effects may be mediated through neuroendocrine, nervous system, or behavioral responses to field exposure.

Page 1 / 1