Archive
12 postsParametric analysis of electromagnetic wave interactions with layered biological tissues for varying frequency, polarization, and fat thickness
This PubMed-listed study models how RF electromagnetic waves interact with a simplified three-layer tissue structure (skin–fat–muscle) across common ISM bands (433, 915, 2450, 5800 MHz), varying polarization (TE/TM), incidence angle, and fat thickness. Using a custom MATLAB pipeline combining multilayer transmission-line methods, Cole–Cole dielectric parameters, and a steady-state Pennes bioheat solution, the authors estimate reflection, absorption, and resulting temperature rise. The simulations report small temperature increases at lower frequencies (433–915 MHz) and larger superficial heating at 5.8 GHz under the modeled conditions, highlighting how fat thickness and wave parameters modulate dosimetry and thermal outcomes.
Intercomparisons of computed epithelial/absorbed power density & temperature rise in anatomical human face models under localized exposures at 10 & 30 GHz
This dosimetry intercomparison evaluated epithelial/absorbed power density and temperature rise in two high-resolution anatomical human face models under localized antenna exposures at 10 and 30 GHz. The study reports a statistical correlation between spatially averaged absorbed power density and temperature rise when appropriate averaging is applied. Antenna type/configuration was identified as the dominant contributor to variability, exceeding differences from averaging methods or anatomical models.
Model Variability in Assessment of Human Exposure to Radiofrequency Fields
This review examines how variability in computational dosimetry models affects assessment of human RF exposure from MHz to terahertz frequencies, focusing on SAR, absorbed power density, and temperature rise. It reports that anatomical scaling and model choices can drive meaningful differences in predicted SAR (including higher values in children/smaller models), while temperature-rise predictions are especially sensitive to thermophysiological parameters and vascular modeling. The authors indicate that computed variability remains within ICNIRP/IEEE safety margins but argue that uncertainties warrant ongoing research and refinement as new technologies (e.g., 6G) emerge.
Behaviour and reproduction of Drosophila melanogaster exposed to 3.6 GHz radio-frequency electromagnetic fields
This animal study assessed whether 3.6 GHz RF-EMF exposure affects behaviour and reproduction in adult Drosophila melanogaster, using micro-CT-based digital-twin dosimetry and numerical simulations. It reports no significant changes in locomotor activity after 5 days at 5.4–9 V/m and no effect on fecundity over 48 hours at the tested absorbed power. The authors note that effects could still be possible at other exposure levels or in different developmental stages.
Investigation of fetal exposure to electromagnetic waves between 2.45 and 5 GHz during pregnancy
This dosimetry study simulated fetal RF-EMF exposure between 2.45 and 5 GHz during the second trimester, estimating SAR10g in fetal brain and lungs. The presence of a belly-button piercing increased SAR, with maxima reported at 2.45 GHz (16 mW/kg in lungs; 14 mW/kg in brain). Despite these increases, all SAR values were reported to remain below IEEE and ICNIRP limits, while the authors note a precautionary implication regarding metal objects during pregnancy.
Evaluation of Exposure Assessment Methods and Procedures for Induction Hobs (Stoves)
This exposure-assessment study evaluated magnetic-field and contact-current exposures from modern induction hobs using IEC-based measurement procedures, 3D field scanning, and numerical dosimetry in anatomical models. It reports large between-hob variability in exposure and states that IEC 62233 may substantially underestimate user exposure. The authors argue that design modifications can reduce exposure and that product standards should be revised to better reflect realistic user scenarios.
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Traceable Assessment of the Absorbed Power Density of Body Mounted Devices at Frequencies Above 10 GHz
This paper presents a traceable experimental dosimetry method to measure absorbed power density (APD) from body-mounted wireless devices at frequencies above 10 GHz. It combines a miniaturized broadband probe, a composite skin-equivalent phantom, and reconstruction/calibration procedures, with validation using reference antennas. The approach is reported as validated for 24–30 GHz and extendable to 10–45 GHz, supporting regulatory-type testing aligned with international safety standards.
In situ electric field dosimetry analysis for powerline frequency peripheral nerve magnetic stimulation
This study used computational dosimetry to analyze induced electric fields in a realistic human body model for a 60 Hz magnetic-field exposure system targeting the leg. Simulations indicated high EF intensities in several leg nerves and modeled conditions consistent with possible peripheral nerve stimulation. The MRG model produced lower stimulation thresholds than the SENN model, and nerve orientation was reported as a key determinant of stimulation risk.
Impact of Anthropomorphic Shape and Skin Stratification on Absorbed Power Density in mmWaves Exposure Scenarios
This dosimetry study used FDTD simulations at 28 GHz to evaluate how skin stratification and anthropomorphic modeling affect absorbed power density (APD) estimates. APD was higher with stratified skin than with homogeneous skin for a wearable patch antenna (16%–30% higher), while plane-wave differences were smaller (<11%). The authors argue that simplified skin models may underestimate exposure in mmWave wearable scenarios.
Weak Radiofrequency Field Effects on Biological Systems Mediated through the Radical Pair Mechanism
This 2025 review examines claims of biological effects from weak, nonthermal RF magnetic fields and evaluates whether such effects could be mediated by the radical pair mechanism (RPM). It reports that aligning RPM theory with low-level experimental observations remains difficult and that many experimental findings are limited by reproducibility, statistical robustness, and dosimetry issues. The authors conclude a tangible but incompletely understood link may exist and emphasize the need for more rigorous, standardized, interdisciplinary work.
Human achromatic flickers and phosphenes thresholds under extremely low frequency electric stimulations
This study estimated thresholds and locus for human phosphene perception during non-invasive transcranial alternating current stimulation at 20, 50, 60, and 100 Hz. Perception depended significantly on stimulation intensity, with the lowest threshold at 20 Hz and no reported phosphenes at 100 Hz. The authors report dosimetry consistent with a retinal origin and frame the findings as relevant for informing cautious ELF exposure limits in safety guidelines.