Archive
2 postsBioelectricity in Morphogenesis
This narrative review discusses bioelectricity arising from membrane potentials and its role in morphogenesis beyond neural tissues. It reports that evidence supports bioelectric signals influencing embryonic development, tissue repair, and disease-related processes, and summarizes cellular mechanisms for generating and sensing these signals. The authors also highlight that potential health implications from natural and artificial electromagnetic fields warrant further scientific attention.
Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health
This review examines links between extremely low-frequency electromagnetic fields, especially the Schumann resonance at ~7.83 Hz, and biological regulation of bioelectricity. It describes proposed mechanisms involving calcium flux modulation and downstream effects on neural activity (including EEG) and circadian rhythms. The article presents both potential benefits from controlled ELF exposures (e.g., therapeutic applications) and potential harms from artificial EMFs disrupting key physiological processes, while emphasizing the need for further research.