Archive
2 postsMechanism first explanation of how the plasma membrane potential controls immune responses
An RF Safe article argues that plasma membrane potential (Vm) is a key control variable for immune cell behavior by shaping ion driving forces, especially Ca2+ influx through CRAC channels and K+ channel–mediated hyperpolarization. It describes proposed links between Vm-regulated ion flux and downstream immune functions such as T-cell activation (NFAT/NF-κB signaling), macrophage polarization, respiratory burst capacity, and NLRP3 inflammasome activation. The piece also mentions that external electric fields can influence T-cell migration and activation markers under some conditions, but it does not present new experimental data in the excerpt provided.
Restoring Bioelectric Timing Fidelity to Prevent Immune Dysregulation
RF Safe argues that non-thermal biological effects from low-frequency/pulsed RF-EMF exposures can be explained by a “timing-fidelity” mechanism involving voltage-gated ion channel (VGIC) gating perturbations. The post links altered ion-channel timing to downstream immune signaling changes (e.g., Ca²⁺ dynamics, NFAT/NF-κB transcription), mitochondrial stress, and inflammatory pathway activation, and suggests this could relate to reported animal cancer signals and reproductive endpoints. It proposes a set of “falsifiable tests” and calls for a policy/engineering program (“Clean Ether Act”) emphasizing RF temporal patterning and shifting some connectivity to LiFi.