Archive
7 postsThe International Collaborative Animal Study of Mobile Phone Radiofrequency Radiation Carcinogenicity and Genotoxicity: The Japanese Study
This PubMed-listed animal study reports results from the Japanese arm of an international Japan–Korea collaboration evaluating whether long-term mobile-phone-like RF-EMF exposure causes cancer or genetic damage in rats. Male Sprague Dawley rats were exposed to 900 MHz CDMA-modulated RF-EMF at a whole-body SAR of 4 W/kg for nearly 18.5 hours/day over two years, alongside OECD/GLP genotoxicity and carcinogenicity testing. The authors report no statistically significant increases in neoplastic or non-neoplastic lesions in major organs and no evidence of DNA or chromosomal damage, concluding the findings do not support reproducible carcinogenic or genotoxic effects under these conditions.
Measurement of Outdoor Micro-Environmental Radio Frequency Electromagnetic Field Exposure Levels in Daily Life Using a Portable Measurement Device
This exposure assessment measured outdoor micro-environment RF-EMF levels in daily-life settings across urban and suburban locations in Japan using a portable device (50 MHz–6 GHz) with GPS. Reported exposure levels were higher in urban areas, with railway stations showing the highest levels among the environments measured. The authors emphasize the need for further comprehensive studies and frame prolonged RF-EMF exposure as an ongoing public health concern.
The International Collaborative Animal Study of Mobile Phone Radiofrequency Radiation Carcinogenicity and Genotoxicity: The Japanese Study
This international collaborative animal study (Japanese arm) evaluated carcinogenicity and genotoxicity in male Sprague Dawley rats exposed long-term to 900 MHz CDMA-modulated RF-EMFs at 4 W/kg whole-body SAR. The abstract reports no statistically significant increases in neoplastic or non-neoplastic lesions in major organs and no evidence of genotoxicity on comet or micronucleus testing. The authors conclude the findings provide strong evidence of no reproducible carcinogenic or genotoxic effects under the studied conditions.
NTP Lite: The Japan-Korea Collaborative RF Exposure Toxicity Project [Health Matters]
This magazine article reviews the Japan-Korea "NTP Lite" RF animal toxicity collaboration and its relationship to prior NTP (2018) and Ramazzini Institute reports of RF-associated tumors in male rats. It notes NTP Lite used a single whole-body SAR of 4 W/kg and completed a two-year exposure phase in 2022, but final reporting is delayed with histopathology and genotoxicity work ongoing. The author highlights protocol harmonization across labs while raising concerns about unexplained animal deaths and physiological differences in exposed groups, and frames the broader evidence as supportive of RF-related cancer risk in laboratory animals.
Analysis of Actual Transmitted Power from Hundreds of 5G FR2 Radio Base Stations over One Month in Urban Areas in Japan
This exposure/compliance assessment study collected 5- and 30-minute transmitted power data over one month from more than 400 5G FR2 beamforming base stations in urban Japan to evaluate the IEC 62232:2025 “actual maximum approach.” All measured transmitted powers were below configured maxima, with 30-minute averaged normalized maxima reported as < -8 dB, while 5-minute averaged maxima reached about -3 dB under low UE counts. The authors report that the actual maximum approach can avoid overestimation for longer averaging times, but may underestimate exposure for stations with three or fewer UEs if power is not monitored and controlled.
Brain Tumor and Mobile Phone Risk Among Young People: Analysis of Japanese People Using the MOBI-Kids International Case-Control Study
This Japanese case-control study within the MOBI-Kids framework examined mobile phone use and brain tumor risk among people aged 10–29 years in the Kanto region. Using logistic regression adjusted for age and sex, it reports no increased brain tumor risk associated with mobile phone use, including analyses considering weighted output power and technical characteristics. The authors highlight possible recall bias and limited power in sub-analyses and recommend ongoing research as wireless technologies change.
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
This exposure assessment measured magnetic fields inside modern Japanese EVs, PHEVs, and ICEVs during actual driving using methods aligned with IEC 62764-1:2022. All measured magnetic flux density values were reported to be below ICNIRP public exposure reference levels. The study mapped in-cabin field sources and noted methodological differences may explain higher transient spikes reported in some international studies.