Archive
10 postsThe International Collaborative Animal Study of Mobile Phone Radiofrequency Radiation Carcinogenicity and Genotoxicity: The Japanese Study
This PubMed-listed animal study reports results from the Japanese arm of an international Japan–Korea collaboration evaluating whether long-term mobile-phone-like RF-EMF exposure causes cancer or genetic damage in rats. Male Sprague Dawley rats were exposed to 900 MHz CDMA-modulated RF-EMF at a whole-body SAR of 4 W/kg for nearly 18.5 hours/day over two years, alongside OECD/GLP genotoxicity and carcinogenicity testing. The authors report no statistically significant increases in neoplastic or non-neoplastic lesions in major organs and no evidence of DNA or chromosomal damage, concluding the findings do not support reproducible carcinogenic or genotoxic effects under these conditions.
The International Collaborative Animal Study of Mobile Phone Radiofrequency Radiation Carcinogenicity and Genotoxicity: The Japanese Study
This international collaborative animal study (Japanese arm) evaluated carcinogenicity and genotoxicity in male Sprague Dawley rats exposed long-term to 900 MHz CDMA-modulated RF-EMFs at 4 W/kg whole-body SAR. The abstract reports no statistically significant increases in neoplastic or non-neoplastic lesions in major organs and no evidence of genotoxicity on comet or micronucleus testing. The authors conclude the findings provide strong evidence of no reproducible carcinogenic or genotoxic effects under the studied conditions.
Radio Frequency Exposure in Military Contexts: A Narrative Review of Thermal Effects and Safety Considerations
This narrative review focuses on RF exposure in military contexts, emphasizing thermal effects as the established mechanism of harm and discussing safety limits set by bodies such as ICNIRP and IEEE. It reports that whole-body SAR limits (≤4 W/kg) generally prevent dangerous core temperature rises, but localized heating risks may persist for tissues like skin and eyes, especially when thermoregulation is impaired. The review highlights CEM43 as a potentially useful thermal-dose metric but notes complexity for transient exposures and calls for improved models and methods across relevant frequency bands.
NTP Lite: The Japan-Korea Collaborative RF Exposure Toxicity Project [Health Matters]
This magazine article reviews the Japan-Korea "NTP Lite" RF animal toxicity collaboration and its relationship to prior NTP (2018) and Ramazzini Institute reports of RF-associated tumors in male rats. It notes NTP Lite used a single whole-body SAR of 4 W/kg and completed a two-year exposure phase in 2022, but final reporting is delayed with histopathology and genotoxicity work ongoing. The author highlights protocol harmonization across labs while raising concerns about unexplained animal deaths and physiological differences in exposed groups, and frames the broader evidence as supportive of RF-related cancer risk in laboratory animals.
Radiofrequency radiation-induced gene expression
This review summarizes studies reporting radiofrequency radiation (RFR)-associated changes in gene expression across biological systems. Reported affected genes relate to cellular stress responses, oxidative processes, apoptosis, DNA damage detection/repair, protein repair, and neural function regulation. The authors highlight reported gene expression effects at or below 0.4 W/kg SAR and argue this challenges current guideline assumptions, while noting that not all studies find significant effects.
Effects of Simultaneous In-Vitro Exposure to 5G-Modulated 3.5 GHz and GSM-Modulated 1.8 GHz Radio-Frequency Electromagnetic Fields on Neuronal Network Electrical Activity and Cellular Stress in Skin Fibroblast Cells
This in-vitro study exposed primary cortical neurons and human immortalized skin fibroblasts to simultaneous 5G-modulated 3.5 GHz and GSM-modulated 1.8 GHz RF-EMF at SARs of 1 or 4 W/kg. It reports no significant changes in neuronal network firing/bursting activity and no alteration of mitochondrial ROS in fibroblasts. Stress-related signaling readouts showed only minor, threshold-level variations without a consistent pattern, and no HSF1 activation was observed. Overall, the authors conclude there is no strong evidence of biological effects under these exposure conditions.
Altered development in rodent brain cells after 900 MHz radiofrequency exposure
This animal and in vitro study examined non-thermal 900 MHz RF-EMF exposure during prenatal and postnatal development at 0.08 and 0.4 W/kg SAR. The authors report changes consistent with altered neurodevelopment, including reduced BDNF, reduced in vivo cell proliferation, and disrupted synaptic balance in rat pup brain regions. In vitro, exposed neural stem cells showed increased apoptosis and DNA double-strand breaks and shifts in cell populations toward glial lineages. The authors conclude that regulatory-level 900 MHz exposure can disrupt key neurodevelopmental processes in rodents.
Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells
This in vitro study tested whether 5G-modulated 3.5 GHz RF-EMF exposure affects oxidative stress and DNA repair in human skin cells. Under acute exposure conditions (up to 24–48h) at SARs up to 4 W/kg, the authors report no significant changes in ROS markers, no adaptive response to oxidative challenge, and no impairment of UV-B–related CPD repair via nucleotide excision repair. The authors note that acute in vitro results may not directly generalize to chronic or real-life exposures.
Characterization of the Core Temperature Response of Free-Moving Rats to 1.95 GHz Electromagnetic Fields
This animal study measured core body temperature in free-moving male and female Sprague Dawley rats during and after 3-hour exposure to 1.95 GHz RF-EMF at multiple whole-body average SAR levels. A measurable thermal response was reported at 4 W/kg, while lower SAR conditions showed smaller or no significant temperature increases. The authors note that temperature dropped quickly after exposure ended, implying post-exposure measurements may underestimate peak heating.
The CB1R of mPFC is involved in anxiety-like behavior induced by 0.8/2.65 GHz dual-frequency electromagnetic radiation
This animal study reports that dual-frequency RF EMR exposure (0.8/2.65 GHz, 4 W/kg) induced anxiety-like behavior in mice. It also reports reduced CB1R and endocannabinoid levels in the mPFC and altered endocannabinoid system markers in the BLA. CB1R overexpression or knockdown in the mPFC reportedly decreased or increased anxiety-like behavior, respectively, suggesting a mechanistic link in this model.