Archive
4 postsNo Measurable Impact of Acute 26 GHz 5G Exposure on Salivary Stress Markers in Healthy Adults
This triple-blind randomized study tested whether 26.5 minutes of 26 GHz (5G) RF exposure at environmental-like levels alters salivary stress biomarkers in healthy adults. Salivary cortisol and alpha-amylase measured before, during, and after exposure did not differ between real and sham conditions. An exploratory subgroup with frequent sampling also showed biomarker stability over time. The study addresses acute exposure only and notes the need for research on repeated or long-term exposures and vulnerable groups.
Millimeter-wave high frequency 5G (26 GHz) electromagnetic fields do not modulate human brain electrical activity
This randomized, triple-blind crossover study examined whether 26 GHz (5G millimeter-wave) exposure affects human EEG activity. Thirty-one healthy young adults completed real and sham 26.5-minute exposures at 2 V/m, with EEG recorded before, during, and after exposure. The study reports no significant effects of exposure on delta, theta, alpha, or beta band power across electrode clusters, providing preliminary reassurance under the tested conditions.
Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones
This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.
Rapid Deployment of 5G Wireless Communication and Risk Assessment on Human Health: Quid Novi?
This review discusses the rapid deployment of 5G and the associated debate about potential human health impacts from EMF exposure, particularly at 3.5–26 GHz including millimeter waves. It emphasizes limited published studies in these exposure ranges and highlights EU-funded initiatives and research consortia aimed at closing knowledge gaps. The authors state that guidelines are generally considered adequate at present, but argue that uncertainties—especially regarding long-term exposure—support continued research and precautionary approaches.