Archive
55 postsEffects of 700MHz radiofrequency radiation (5G lower band) on the reproductive parameters of female Wistar rats
This animal study examined short- and long-term 700 MHz (lower-band 5G) radiofrequency exposure in female Wistar rats, comparing control, sham, and exposed groups. It reports no DNA damage and no change in estrous cycle length, but increased ovarian oxidative stress markers in exposed animals. Long-term exposure was associated with ovarian histopathological alterations, while estradiol and progesterone stayed within normal ranges and testosterone increased slightly but significantly.
The effects of radiofrequency radiation on male reproductive health and potential mechanisms (Review)
This narrative review summarizes human and animal research on radiofrequency (RF) radiation exposure (e.g., mobile phones, Wi‑Fi, occupational sources) and male reproductive outcomes. It reports that the literature links RF exposure with reduced sperm quality and increased DNA damage, often alongside oxidative stress and other proposed biological changes. Although inconsistencies are acknowledged, the authors conclude the overall evidence suggests harmful associations and call for standardized, long-term studies and reconsideration of guidelines.
Role of radio-frequency electromagnetic waves in causing oxidative stress
This animal study exposed fertilized chick eggs to a nearby 1800 MHz mobile phone that was called repeatedly (50 minutes/day) and assessed embryos at days 10 and 15. The exposed group reportedly showed mitochondrial abnormalities in liver, brain, and heart tissues on electron microscopy, along with increased HSP70 in cardiomyocytes and hepatocytes. The authors conclude that radio-frequency electromagnetic waves can induce oxidative stress and mitochondrial damage in developing embryos.
Electromagnetic Fields Act Similarly in Plants as in Animals: Probable Activation of Calcium Channels via Their Voltage Sensor
This narrative review proposes that low-intensity microwave/lower-frequency EMFs activate plasma membrane calcium channels in animals, increasing intracellular calcium and triggering downstream signaling including oxidative stress pathways. It further suggests that EMF actions in terrestrial multicellular plants are probably similar, with plant two-pore channels proposed as plausible mediators due to a comparable voltage sensor. The abstract describes briefly reviewed plant studies as consistent with this mechanism, but does not provide detailed exposure parameters or quantitative results.
Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects
This narrative review argues that non-thermal biological effects of extremely low and microwave frequency EMFs may be mediated by activation of voltage-gated calcium channels (VGCCs). It cites 23 studies in which VGCC blockers reportedly block or reduce diverse EMF effects and proposes downstream Ca2+/calmodulin-dependent nitric oxide signaling. The review discusses both potential therapeutic effects (e.g., bone growth stimulation) and potential adverse effects via oxidative stress pathways, including a reviewed example of DNA single-strand breaks.