Archive
5 postsFilters: category: biological-effects Clear
Rouleaux in Real Time: Ultrasound Evidence, Red Blood Cells, and the S4–Mito–Spin Mechanism
RF Safe argues that red blood cell (RBC) “rouleaux” (stacking/aggregation) could be a visible, testable endpoint for investigating potential short-term physiological effects from wireless device exposure. The post highlights a 2025 report by Brown & Biebrich describing ultrasound observations interpreted as rouleaux-like aggregation after 5 minutes of smartphone placement near the popliteal vein, and contrasts this with earlier, more-criticized “live blood analysis” videos. It frames rouleaux as an electrostatic/zeta-potential phenomenon and calls for mechanistic testing and exposure mitigation, while presenting the ultrasound observation as a key shift toward more clinically standard imaging.
Exposure to 5G-NR electromagnetic fields affects larval development of Aedes aegypti mosquito
A PubMed-listed study examined whether exposure to 5G New Radio (5G-NR) radiofrequency electromagnetic fields (RF-EMF) at 3.6 GHz affects larval development in Aedes aegypti mosquitoes. Using a custom reverberation-chamber exposure setup and numerical simulations to estimate dose, the authors report slower development at a lower exposure level (46.2 V/m), particularly in nutritionally weakened larvae. At a higher exposure level (182.6 V/m), the study reports dielectric heating that altered development timing and adult size.
Ion Timing Fidelity under RF exposure: from S4 voltage sensing to mitochondrial ROS, mtDNA release, and immune dysregulation
This RF Safe article argues that persistent low-intensity, pulsed RF exposure could disrupt the timing of voltage-gated ion channel activity by affecting the S4 voltage-sensing region, leading to downstream changes in calcium/proton signaling, mitochondrial stress, and immune dysregulation. It proposes a mechanistic chain from altered ion gating to increased mitochondrial ROS, mitochondrial DNA release, and activation of innate immune pathways (e.g., cGAS-STING, TLR9, NLRP3). The post cites “multiple reviews and experiments” and references animal findings and a 2025 mouse study, but the provided text does not include enough study details to independently assess the strength of the evidence.
A Systematic Review of the Impact of Electromagnetic Waves on Living Beings
This PRISMA-adherent systematic review searched PubMed, Scopus, and the Cochrane Library for studies (2017–2024) on physiological or behavioral responses to EMF exposure, emphasizing studies reporting harmful or concerning effects. Across 24 included studies (human non-randomized, in vitro, and animal), the review reports negative biological effects including oxidative stress, inflammation, genotoxicity, cardiovascular and fertility-related outcomes, neuronal activity changes, and plant photosynthesis impacts. The authors report that most studies had moderate to high risk of bias and therefore the overall certainty of evidence was lower, and they highlight major gaps in long-term human evidence and exposure standardization.
Sensation of electric fields in the Drosophila melanogaster larva
This animal study reports that Drosophila melanogaster larvae can sense electric fields and exhibit robust electrotaxis toward the cathode in controlled environments. The authors identify head-tip sensory neurons required for this behavior and report calcium-imaging evidence that Gr66a-positive neurons encode field strength and orientation. The work supports electrosensation as a functional sensory modality in Drosophila larvae and demonstrates measurable neural and behavioral responses to electric fields under the studied conditions.