Archive
91 postsFilters: category: animal-studies Clear
Methodologically solid and analytically rigorous: the evaluations of our systematic review on RF-EMF and animal cancer are reliable
No abstract is available in the provided material. From the title, the article appears to defend or affirm the methodological rigor and reliability of evaluations in the authors' systematic review on RF-EMF exposure and animal cancer. Specific results regarding carcinogenic effects are not stated in the provided text.
NTP Lite: The Japan-Korea Collaborative RF Exposure Toxicity Project [Health Matters]
This magazine article reviews the Japan-Korea "NTP Lite" RF animal toxicity collaboration and its relationship to prior NTP (2018) and Ramazzini Institute reports of RF-associated tumors in male rats. It notes NTP Lite used a single whole-body SAR of 4 W/kg and completed a two-year exposure phase in 2022, but final reporting is delayed with histopathology and genotoxicity work ongoing. The author highlights protocol harmonization across labs while raising concerns about unexplained animal deaths and physiological differences in exposed groups, and frames the broader evidence as supportive of RF-related cancer risk in laboratory animals.
Behaviour and reproduction of Drosophila melanogaster exposed to 3.6 GHz radio-frequency electromagnetic fields
This animal study assessed whether 3.6 GHz RF-EMF exposure affects behaviour and reproduction in adult Drosophila melanogaster, using micro-CT-based digital-twin dosimetry and numerical simulations. It reports no significant changes in locomotor activity after 5 days at 5.4–9 V/m and no effect on fecundity over 48 hours at the tested absorbed power. The authors note that effects could still be possible at other exposure levels or in different developmental stages.
Time-Dependence Effect of 2.45 GHz RF-EMR Exposure on Male Reproductive Hormones and LHCGR
This animal study exposed male Sprague Dawley rats to 2.45 GHz Wi-Fi for varying daily durations over eight weeks and assessed reproductive hormones and LHCGR expression. Serum LH and testosterone did not differ significantly from controls, but LHCGR mRNA increased with longer exposure and LHCGR protein showed decreases with shorter exposures with partial improvement at 24 hours/day. The findings suggest molecular alterations in testicular tissue despite stable systemic hormone levels.
From adults to offspring: Wi-Fi RF-EMR exposure in adult zebrafish impairs reproduction and transgenerationally effects development and behavior of progeny
This animal study examined Wi-Fi RF-EMR exposure in adult zebrafish (4 hours/day for 30 days) and assessed reproductive tissues and offspring outcomes. The abstract reports testicular and ovarian histopathological abnormalities in exposed adults. Offspring from exposed parents, maintained under EMF-free conditions, reportedly showed increased mortality, morphological abnormalities, and anxiety-like behavior, with malformations increasing with longer parental exposure.
Role of visual and non-visual opsins in blue light-induced neurodegeneration in Drosophila melanogaster
This animal study used Drosophila knockout lines to examine whether visual (Rh1) versus non-visual (Rh7) opsins contribute to blue-light-associated neural damage. Flies were continuously exposed to 488 nm blue light from egg deposition to 20 days, and brain DNA damage and vacuolisation were assessed. The study reports greater DNA damage and neurodegeneration markers in Rh1 knockout flies than in wild-type or Rh7 knockout flies, and concludes Rh1 is a predominant mediator of blue-light-induced neurotoxicity in the fly CNS.
Male Reproductive and Cellular Damage After Prenatal 3.5 GHz Radiation Exposure: One-Year Postnatal Effects
This animal study examined whether prenatal exposure to 3.5 GHz radiofrequency radiation (2 hours/day) affects male reproductive outcomes later in life. Male rat offspring assessed at 12 months showed multiple adverse testicular and cellular findings in exposed groups versus sham controls, including impaired spermatogenesis markers, increased abnormal sperm morphology, increased DNA damage, and increased apoptosis, with full-gestation exposure generally most pronounced. The authors interpret the results as evidence of persistent reproductive toxicity from prenatal exposure and call for further mechanistic work and precautionary actions.
Synergistic Effects of 2600 MHz Radiofrequency Exposure and Indomethacin on Oxidative Stress and Gastric Mucosal Injury in Rats
This rat study tested whether 2600 MHz radiofrequency field exposure interacts with indomethacin to affect gastric tissue. Both exposures alone were reported to increase oxidative stress and reduce antioxidant markers in the stomach. Co-exposure was reported to intensify oxidative stress, apoptosis, and histological gastric mucosal injury compared with either factor alone, consistent with a synergistic detrimental effect in this model.
Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats
This rat study examined 60-day RF-EMF exposure at 3.5 GHz and 24 GHz for 1 or 7 hours per day and assessed testicular cytokines, apoptosis-related gene expression, and sperm quality. The authors report changes consistent with altered immune signaling and pro-apoptotic pathways, alongside reduced sperm parameters (frequency- and duration-dependent). The conclusion frames these findings as an EMF safety concern and suggests longer daily exposure worsened negative effects.
The effect of Wi-Fi on elastic and collagen fibres in the blood vessel wall of the chorioallantoic membrane
This animal experimental study exposed chicken embryos (CAM) continuously to 2.4 GHz Wi-Fi at an average power density of 300 μW/m2 for 9 or 14 embryonic days. H&E staining reportedly showed no significant structural differences in large vessel walls versus controls. However, special staining reported decreased optical density of elastic fibers at both time points and changes in collagen fiber optical density (increase at day 9, decrease at day 14). The authors conclude Wi-Fi exposure can alter fibrous vessel wall components and suggest potential relevance to cardiovascular disorders.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.
The effect of alpha-lipoic acid on liver damage induced by extremely low-frequency electromagnetic fields in a rat model
This rat study assessed whether alpha-lipoic acid (ALA) modifies liver effects from extremely low-frequency magnetic field (ELF-MF) exposure. ELF-MF exposure (2 mT, 4 hours/day for 30 days) was associated with increased liver pathology and higher apoptosis markers (TUNEL, caspase-3) compared with other groups. ALA reduced several histopathological changes and lowered TUNEL/caspase-3, but did not improve fibrosis or biliary proliferation.
Female Crabs Are More Sensitive to Environmentally Relevant Electromagnetic Fields from Submarine Power Cables
This controlled laboratory study examined sex-specific behavioral responses of juvenile shore crabs to magnetic fields intended to represent submarine power cable EMFs. Females showed consistent attraction to EMF-exposed zones across 500–3,200 μT exposures, whereas males showed no consistent spatial preference. The authors suggest such sex-specific sensitivity could disrupt female-driven behaviors relevant to migration and reproduction, with potential ecological implications.
Altered development in rodent brain cells after 900 MHz radiofrequency exposure
This animal and in vitro study examined non-thermal 900 MHz RF-EMF exposure during prenatal and postnatal development at 0.08 and 0.4 W/kg SAR. The authors report changes consistent with altered neurodevelopment, including reduced BDNF, reduced in vivo cell proliferation, and disrupted synaptic balance in rat pup brain regions. In vitro, exposed neural stem cells showed increased apoptosis and DNA double-strand breaks and shifts in cell populations toward glial lineages. The authors conclude that regulatory-level 900 MHz exposure can disrupt key neurodevelopmental processes in rodents.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.
Combined effects of constant temperature and radio frequency exposure on Aedes mosquito development
This laboratory study tested combined effects of constant temperature and RF exposure on development of Aedes aegypti and Aedes albopictus from hatching to adult emergence. Temperature was reported as the primary determinant of developmental timing, with optimal development around 30 2 C. RF exposure (900 MHz and 18 GHz) was described as a secondary factor that could accelerate or prolong development depending on temperature, with synergistic shortening at 25 0 C and prolongation under suboptimal conditions.
Effect of Static Electromagnetic Field on Growth Parameters, Survival Rate, Sex Distribution, Ratio, and Liver and Gonadal Health of Zebrafish
This animal study exposed zebrafish embryos to static electromagnetic fields for 63 days post-hatching across aquariums positioned 30–99 cm from the source, with an EMF-free control. The abstract reports strong shifts in sex distribution (including 100% female at the closest distance), markedly reduced survival in exposed groups, and histological liver and gonadal damage. The authors frame the findings as evidence of potential ecological risk via disrupted sex ratios and compromised health.
Effect of the radiation emitted from a cell phone on T lymphocytes in mice
This mouse study examined whether cell phone radiation affects T lymphocytes over 2–8 weeks of exposure. CD4 and CD8 subset percentages were similar across groups, but after more than six weeks, exposed groups showed increased T-cell apoptosis and reduced transformation rates compared with shams. The study also reports decreased IL-10 and increased IL-12 in exposed groups, suggesting time-dependent immunological changes under the tested conditions.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Single-cell analysis reveals the spatiotemporal effects of long-term electromagnetic field exposure on the liver
This animal study exposed mice to 2.45 GHz electromagnetic fields daily for up to 5 months and assessed liver effects using serum tests, lipidomics, histology, and single-cell/spatiotemporal transcriptomics. The authors report that hepatic cell types differed in sensitivity, with hepatocytes, endothelial cells, and monocytes showing notable transcriptomic disruptions. Reported changes involved lipid metabolism and immune regulation and were spatially enriched in peri-portal liver regions. The authors frame the findings as evidence of significant biological impacts on the liver from long-term EMF exposure.
Effects of coenzyme Q10 on sperm parameters and pathological changes induced by Wi-Fi waves in the testicular tissue of rats
This animal study exposed rats to Wi‑Fi waves for 7 hours/day for 2 months and assessed sperm parameters, serum testosterone, and testicular/epididymal pathology, with and without coenzyme Q10 (CoQ10). The authors report that Wi‑Fi exposure was linked to worse sperm parameters, lower testosterone, and adverse testicular pathology. CoQ10 supplementation during exposure was reported to mitigate these changes compared with Wi‑Fi exposure alone.
A Prolonged exposure to Wi-Fi Radiation Induces Neurobehavioral Changes and Oxidative Stress in Adult Zebrafish
This animal study exposed adult zebrafish to 2.45 GHz Wi‑Fi radiation for 4 hours daily over 30 consecutive days. The authors report neurobehavioral impairments with altered locomotion, alongside decreased acetylcholinesterase and increased brain oxidative stress. They conclude these findings indicate a safety risk and call for further mechanistic and public health research.
Low frequency magnetic field exposure and neurodegenerative disease: systematic review of animal studies
This systematic review synthesizes animal studies on low frequency magnetic field exposure in relation to neurodegenerative diseases. It reports no support for a causal induction of Alzheimer’s-type neuropathology in naive animals, while noting that evidence is too limited to draw strong conclusions for motor neuron disease, multiple sclerosis, and Parkinson’s disease regarding induced neuropathology. In models with pre-existing neurodegenerative disease, the review describes possible therapeutic effects on behavioral and neuroanatomical outcomes for dementia-related conditions, and no apparent effect on motor neuron disease progression.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.
Histomorphometric study of thyroid tissue in juvenile rats exposed to 5G electromagnetic fields
This animal study examined thyroid histomorphometry in juvenile male Wistar rats after 2 weeks of 5G EMF exposure (3.5 GHz, 1.5 V/m). Exposed rats showed larger follicle and colloid areas and a significantly lower Thyroid Activation Index, which the authors interpret as thyroid hypoactivity. The authors suggest this may represent a potential health risk and call for further work including hormone assays and mechanistic studies.